Cite

[1] AGARWAL, P., RITIKA G., AGARWAL, N. 2019. Advances in Synthesis and Applications of Microalgal Nanoparticles for Wastewater Treatment. Journal of Nanotechnology,2019, 1–9. https://doi.org/10.1155/2019/7392713.10.1155/2019/7392713Open DOISearch in Google Scholar

[2] AMARO, H. M., A. GUEDES, C., MALCATA, F. X. 2011. Advances and Perspectives in Using Microalgae to Produce Biodiesel. Applied Energy,88(10): 3402–3410. https://doi.org/10.1016/j.apenergy.2010.12.014.10.1016/j.apenergy.2010.12.014Search in Google Scholar

[3] ANSARI, F. A., SHEKH, A. Y., GUPTA, S. K., BUX, F. 2017. Microalgae for Biofuels: Applications, Process Contrains and Future Needs. Algal Biofuels: Recent Advances and Future Prospects, 57–76. https://doi.org/10.1007/978-3-319-51010-1.10.1007/978-3-319-51010-1Open DOISearch in Google Scholar

[4] BAJPAI, P. 2019. Third Generation Biofuels. Springer Nature Singapore Pte Ltd., 2019. 87 p. ISBN 978-981-136-2378-2.Search in Google Scholar

[5] BARROS, A. I., GONÇALVES, A. L., SIMÕES, M., PIRES, J. C.M. 2015. Harvesting Techniques Applied to Microalgae: A Review. Renewable and Sustainable Energy Reviews 41, 1489–1500. https://doi.org/10.1016/j.rser.2014.09.037.10.1016/j.rser.2014.09.037Open DOISearch in Google Scholar

[6] BHARTE, S., DESAI, K. 2018. Harvesting Chlorella Species Using Magnetic Iron Oxide Nanoparticles. Phycological Research, 67(3), 128–133. https://doi.org/10.1111/pre.12358.10.1111/pre.12358Open DOISearch in Google Scholar

[7] CAI, T., PARK, S. Y., LI, Y. 2013. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renewable and Sustainable Energy Reviews, 19, 360–369. https://doi.org/10.1016/j.rser.2012.11.030.10.1016/j.rser.2012.11.030Open DOISearch in Google Scholar

[8] CERFF, M., MORWEISER, M., DILLSCHNEIDER, R., MICHEL, A., MENZEL, K., POSTEN, C. 2012. Harvesting Fresh Water and Marine Algae by Magnetic Separation: Screening of Separation Parameters and High Gradient Magnetic Filtration. Bioresource Technology, 118, 289–295. https://doi.org/10.1016/j.biortech.2012.05.020.10.1016/j.biortech.2012.05.02022705536Search in Google Scholar

[9] COLLOTTA, M., CHAMPAGNE, P., MABEE, W., TOMASONI, G., LEITE, G. B., BUSI, L., ALBERTI, M. 2017. Comparative LCA of Flocculation for the Harvesting of Microalgae for Biofuels Production. Procedia CIRP, 61, 756–760. https://doi.org/10.1016/j.procir.2016.11.146.10.1016/j.procir.2016.11.146Open DOISearch in Google Scholar

[10] DARVEHEI, P., BAHRI, P. A., MOHEIMANI, N. R.. 2018. Model Development for the Growth of Microalgae: A Review. Renewable and Sustainable Energy Reviews, 97, 233–258. https://doi.org/10.1016/j.rser.2018.08.027.10.1016/j.rser.2018.08.027Search in Google Scholar

[11] DEMIRBAS, A. 2010. Use of Algae as Biofuel Sources. Energy Conversion and Management, 51(12), 2738–2749. https://doi.org/10.1016/j.enconman.2010.06.010.10.1016/j.enconman.2010.06.010Open DOISearch in Google Scholar

[12] ENAMALA, M. K., ENAMALA, S., CHAVALI, M., DONEPUDI, J., YADAVALLI, R., KOLAPALLI, B., ARADHYULA, T. V., VELPURI, J., KUPPAM, Ch. 2018. Production of Biofuels from Microalgae - A Review on Cultivation, Harvesting, Lipid Extraction, and Numerous Applications of Microalgae. Renewable and Sustainable Energy Reviews,94, 49–68. https://doi.org/10.1016/j.rser.2018.05.012.10.1016/j.rser.2018.05.012Open DOISearch in Google Scholar

[13] FASAEI, F., BITTER, J. H., SLEGERS, P. M., van BOXTEL, A. J.B. 2018. Techno-Economic Evaluation of Microalgae Harvesting and Dewatering Systems. Algal Research, 31, 347–362. https://doi.org/10.1016/j.algal.2017.11.038.10.1016/j.algal.2017.11.038Open DOISearch in Google Scholar

[14] FRAGA-GARCÍA, P., KUBBUTAT, P., BRAMMEN, M., SCHWAMINGER, S., BERENSMEIER, S. 2018. Bare Iron Oxide Nanoparticles for Magnetic Harvesting of Microalgae: From Interaction Behavior to Process Realization. Nanomaterials,8(5), 1 - 17. https://doi.org/10.3390/nano8050292.10.3390/nano8050292597730629723963Open DOISearch in Google Scholar

[15] GERULOVÁ, K., BARTOŠOVÁ, A., BLINOVÁ, L., BÁRTOVÁ, K., DOMÁNKOVÁ, M., GARAIOVÁ, Z., PALCUT, M. 2018. Magnetic Fe3O4-Polyethyleneimine Nanocomposites for Efficient Harvesting of Chlorella zofingiensis, Chlorella vulgaris, Chlorella sorokiniana, Chlorella ellipsoidea and Botryococcus braunii. Algal Research, 33, 165–172. https://doi.org/10.1016/j.algal.2018.05.003.10.1016/j.algal.2018.05.003Open DOISearch in Google Scholar

[16] HAMED, I. 2016. The Evolution and Versatility of Microalgal Biotechnology: A Review. Comprehensive Reviews in Food Science and Food Safety,15(6), 1104–1123. https://doi.org/10.1111/1541-4337.12227.10.1111/1541-4337.1222733401835Open DOISearch in Google Scholar

[17] HARUN, R., SINGH, M., FORDE, G. M., DANQUAH, M. K. 2010. Bioprocess Engineering of Microalgae to Produce a Variety of Consumer Products. Renewable and Sustainable Energy Reviews,14(3), 1037–1047. https://doi.org/10.1016/j.rser.2009.11.004.10.1016/j.rser.2009.11.004Open DOISearch in Google Scholar

[18] HOCHMAN, G., ZILBERMAN, D. 2014. Algae Farming and Its Bio-Products. In McCann M., Buckeridge M., Carpita N. (eds) Plants and BioEnergy. Advances in Plant Biology, 4, Springer, New York, pp. 49-64. https://doi.org/10.1007/978-1-4614-9329-7.10.1007/978-1-4614-9329-7Open DOISearch in Google Scholar

[19] HU, Y.-R., GUO, CH., WANG, F., WANG, S.-K., PAN, F., LIU, CH.-Z. 2014. Improvement of Microalgae Harvesting by Magnetic Nanocomposites Coated with Polyethylenimine. Chemical Engineering Journal,242, 341–347. https://doi.org/10.1016/j.cej.2013.12.066.10.1016/j.cej.2013.12.066Open DOISearch in Google Scholar

[20] HU, Y.-R., WANG, F., WANG, S.-K., LIU, CH.-Z., GUO, CH. 2013. Efficient Harvesting of Marine Microalgae Nannochloropsis maritima Using Magnetic Nanoparticles. Bioresource Technology138, 387–390. https://doi.org/10.1016/j.biortech.2013.04.016.10.1016/j.biortech.2013.04.01623639490Open DOISearch in Google Scholar

[21] CHRISTENSON, L., SIMS, R. 2011. Production and Harvesting of Microalgae for Wastewater Treatment, Biofuels, and Bioproducts. Biotechnology Advances, 29(6), 686–702. https://doi.org/10.1016/j.biotechadv.2011.05.015.10.1016/j.biotechadv.2011.05.01521664266Open DOISearch in Google Scholar

[22] JIANG, B., LIAN, L., XING, Y., ZHANG, N., CHEN, Y., LU, P., ZHANG, N. 2018. Advances of Magnetic Nanoparticles in Environmental Application: Environmental Remediation and (Bio)Sensors as Case Studies. Environmental Science and Pollution Research,25(31), 30863–30879. https://doi.org/10.1007/s11356-018-3095-7.10.1007/s11356-018-3095-730196461Open DOISearch in Google Scholar

[23] JIANG, Ch., WANG, Ren, MA, W. 2010. The Effect of Magnetic Nanoparticles on Microcystis aeruginosa Removal by a Composite Coagulant. Colloids and Surfaces A: Physicochemical and Engineering Aspects,369(1–3), 260–267. https://doi.org/10.1016/j.colsurfa.2010.08.033.10.1016/j.colsurfa.2010.08.033Open DOISearch in Google Scholar

[24] KHAN, M. I., SHIN, J. H., KIM, J. D. 2018. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microbial Cell Factories17(1), 1–21. https://doi.org/10.1186/s12934-018-0879-x.10.1186/s12934-018-0879-x583638329506528Open DOISearch in Google Scholar

[25] LEE, K., LEE, S. Y., NA, J.-G., JEON, S.-G., PRAVEENKUMAR, R., KIM, D.-M., CHANG, W.-S., OH, Y.-K. 2013. Magnetophoretic Harvesting of Oleaginous Chlorella Sp. by Using Biocompatible Chitosan/Magnetic Nanoparticle Composites. Bioresource Technology, 149, 575–578. https://doi.org/10.1016/j.biortech.2013.09.074.10.1016/j.biortech.2013.09.07424128604Open DOISearch in Google Scholar

[26] LEE, K., LEE, S. Y., PRAVEENKUMAR, R., KIM, B., SEO, J. Y., JEON, S. G., NA, J.-G., PARK, J.-Y., KIM, D.-M., OH, Y.-K. 2014. Repeated Use of Stable Magnetic Flocculant for Efficient Harvest of Oleaginous Chlorella Sp. Bioresource Technology,167, 284–290. https://doi.org/10.1016/j.biortech.2014.06.055.10.1016/j.biortech.2014.06.05524995878Open DOISearch in Google Scholar

[27] LEITE, G. B., ABDELAZIZ, A. E.M., HALLENBECK, P. C. 2013. Algal Biofuels: Challenges and Opportunities. Bioresource Technology,145, 134–141. https://doi.org/10.1016/j.biortech.2013.02.007.10.1016/j.biortech.2013.02.00723499181Open DOISearch in Google Scholar

[28] LIU, P.-R., WANG, T., YANG, Z.-Y., HONG, Y., HOU, Y.-L. 2017. Long-Chain Poly-Arginine Functionalized Porous Fe3O4 Microspheres as Magnetic Flocculant for Efficient Harvesting of Oleaginous Microalgae. Algal Research,27, 99–108. https://doi.org/10.1016/j.algal.2017.08.025.10.1016/j.algal.2017.08.025Open DOISearch in Google Scholar

[29] LIU, P.-R., ZHANG, H.-L., WANG, T., YANG, W.-L., HONG, Y., HOU, Y.-L. 2016. Functional Graphene-Based Magnetic Nanocomposites as Magnetic Flocculant for Efficient Harvesting of Oleaginous Microalgae. Algal Research,19, 86–95. https://doi.org/10.1016/j.algal.2016.07.008.10.1016/j.algal.2016.07.008Open DOISearch in Google Scholar

[30] MATHIMANI, T., MALLICK, N. 2018. A Comprehensive Review on Harvesting of Microalgae for Biodiesel - Key Challenges and Future Directions. Renewable and Sustainable Energy Reviews,91, 1103–1120. https://doi.org/10.1016/j.rser.2018.04.083.10.1016/j.rser.2018.04.083Open DOISearch in Google Scholar

[31] MOBIN, S., ALAM, F. 2017. Some Promising Microalgal Species for Commercial Applications: A Review. Energy Procedia,110, 510–517. https://doi.org/10.1016/j.egypro.2017.03.177.10.1016/j.egypro.2017.03.177Open DOISearch in Google Scholar

[32] MOLINA GRIMA, E., BELARBI, E.-H., ACIÉN FERNÁNDEZ, F. G., ROBLES MEDINA, A., CHISTI, Y. 2003. Recovery of Microalgal Biomass and Metabolites: Process Options and Economics. Biotechnology Advances,20(7–8), 491–515. http://www.ncbi.nlm.nih.gov/pubmed/14550018.10.1016/S0734-9750(02)00050-2Search in Google Scholar

[33] PANDEY, M. K., DASGUPTA, CH. N., MISHRA, S., SRIVASTAVA, M., GUPTA, V. K., SUSEELA, M. R., RAMTEKE, P. W. 2019. Bioprospecting Microalgae from Natural Algal Bloom for Sustainable Biomass and Biodiesel Production. Applied Microbiology and Biotechnology, 103, 5447–5458. https://doi.org/10.1007/s00253-019-09856-2.10.1007/s00253-019-09856-231101944Open DOISearch in Google Scholar

[34] PRAGYA, N., PANDEY, K. K., SAHOO, P. K. 2013. A Review on Harvesting, Oil Extraction and Biofuels Production Technologies from Microalgae. Renewable and Sustainable Energy Reviews,24, 159–171. https://doi.org/10.1016/j.rser.2013.03.034.10.1016/j.rser.2013.03.034Open DOISearch in Google Scholar

[35] PROCHAZKOVÁ, G., ŠAFÁRIK, I., BRANYIK, T. 2013. Harvesting Microalgae with Microwave Synthesized Magnetic Microparticles. Bioresource Technology, 130, 472–477. https://doi.org/10.1016/j.biortech.2012.12.060.10.1016/j.biortech.2012.12.06023313695Open DOISearch in Google Scholar

[36] RASTOGI, R. P., PANDEY, A., LARROCHE, CH., MADAMWAR, D. 2018. Algal Green Energy – R&D and Technological Perspectives for Biodiesel Production. Renewable and Sustainable Energy Reviews,82, 2946–2969. https://doi.org/10.1016/j.rser.2017.10.038.10.1016/j.rser.2017.10.038Open DOISearch in Google Scholar

[37] RIZWAN, M., MUJTABA, G., MEMON, S. A., LEE, K., RASHID, N. 2018. Exploring the Potential of Microalgae for New Biotechnology Applications and beyond: A Review. Renewable and Sustainable Energy Reviews,92, 394–404. https://doi.org/10.1016/j.rser.2018.04.034.10.1016/j.rser.2018.04.034Open DOISearch in Google Scholar

[38] SAXENA, P. & Harish. 2018. Nanoecotoxicological Reports of Engineered Metal Oxide Nanoparticles on Algae. Current Pollution Reports,4(2), 128–142. https://doi.org/10.1007/s40726-018-0088-6.10.1007/s40726-018-0088-6Open DOISearch in Google Scholar

[39] SEO, J. Y., KIM, M. G., LEE, K., LEE, Y.-C., NA, J.-G., JEON, S. G., PARK, S. B., OH, Y.-K. 2017. Multifunctional Nanoparticle Applications to Microalgal Biorefinery. In: Rai M., da Silva S. (eds) Nanotechnology for Bioenergy and Biofuel Production. Green Chemistry and Sustainable Technology. Springer, Cham, Switzerland. 370 p. ISBN 978-3-319-45459-7.Search in Google Scholar

[40] SINGH, G., PATIDAR, S. K. 2018. Microalgae Harvesting Techniques: A Review. Journal of Environmental Management,217, 499–508. https://doi.org/10.1016/j.jenvman.2018.04.010.10.1016/j.jenvman.2018.04.01029631239Open DOISearch in Google Scholar

[41] SUN, R., SUN, P., ZHANG, J., ESQUIVEL-ELIZONDO, S., WU, Y. 2018. Microorganisms-Based Methods for Harmful Algal Blooms Control: A Review. Bioresource Technology,248, 12–20. https://doi.org/10.1016/j.biortech.2017.07.175.10.1016/j.biortech.2017.07.17528801171Open DOISearch in Google Scholar

[42] TAJABADI, M., KHOSROSHAHI, M. E.. 2013. Effect of Alkaline Media Concentration and Modification of Temperature on Magnetite Synthesis Method Using FeSO4/NH4OH. International Journal of Chemical Engineering and Applications,3(3), 206–210. https://doi.org/10.7763/ijcea.2012.v3.187.10.7763/ijcea.2012.v3.187Open DOISearch in Google Scholar

[43] VALVERDE, F., ROMERO-CAMPERO, F. J., ROSA, L., GUERRERO, M. G., SERRANO, A. 2016. New Challenges in Microalgae Biotechnology. European Journal of Protistology, 55, 95–101. https://doi.org/10.1016/j.ejop.2016.03.002.10.1016/j.ejop.2016.03.00227062304Open DOISearch in Google Scholar

[44] WAN, CH., ALAM, M. A., ZHAO, X.-Q., ZHANG, X.-Y., GUO, S.-L., HO, S.-H., CHANG, J.-S., BAI, F.-W. 2015. Current Progress and Future Prospect of Microalgal Biomass Harvest Using Various Flocculation Technologies. Bioresource Technology, 184, 251–257. https://doi.org/10.1016/j.biortech.2014.11.081.10.1016/j.biortech.2014.11.08125499148Open DOISearch in Google Scholar

[45] WANG, S.-K., STILES, A. R., GUO, CH., LIU, CH.-Z. 2015. Harvesting Microalgae by Magnetic Separation: A Review. Algal Research,9, 178–185. https://doi.org/10.1016/j.algal.2015.03.005.10.1016/j.algal.2015.03.005Open DOISearch in Google Scholar

[46] WANG, T., YANG, W.-L., HONG, Y., HOU, Y.-L. 2016. Magnetic Nanoparticles Grafted with Amino-Riched Dendrimer as Magnetic Flocculant for Efficient Harvesting of Oleaginous Microalgae. Chemical Engineering Journal,297, 304–314. https://doi.org/10.1016/j.cej.2016.03.038.10.1016/j.cej.2016.03.038Open DOISearch in Google Scholar

[47] XU, L., GUO, CH., WANG, F., ZHENG, S., LIU, CH.-Z. 2011. A Simple and Rapid Harvesting Method for Microalgae by in Situ Magnetic Separation. Bioresource Technology,102(21), 10047–10051. https://doi.org/10.1016/j.biortech.2011.08.021.10.1016/j.biortech.2011.08.02121890346Open DOISearch in Google Scholar

[48] XU, Y., Fu, Y., ZHANG, D. 2017. Cost-Effectiveness Analysis on Magnetic Harvesting of Algal Cells. Materials Today: Proceedings, 4, 50–56. https://doi.org/10.1016/j.matpr.2017.01.192.10.1016/j.matpr.2017.01.192Open DOISearch in Google Scholar

[49] YANG, Y., HOU, J., WANG, P., WANG, CH., MIAO, L., AO, Y., XU, Y., et al. 2018. Interpretation of the Disparity in Harvesting Efficiency of Different Types of Microcystis Aeruginosa Using Polyethylenimine (PEI)-Coated Magnetic Nanoparticles. Algal Research,29, 257–265. https://doi.org/10.1016/j.algal.2017.10.020.10.1016/j.algal.2017.10.020Open DOISearch in Google Scholar

[50] ZHAO, Y., LIANG, W., LIU, L., LI, F., FAN, Q., SUN, X. 2015. Harvesting Chlorella vulgaris by Magnetic Flocculation Using Fe3O4 coating with Polyaluminium Chloride and Polyacrylamide. Bioresource Technology,198, 789–796. https://doi.org/10.1016/j.biortech.2015.09.087.10.1016/j.biortech.2015.09.08726454365Open DOISearch in Google Scholar

[51] ZHAO, Y., WANG, X., JIANG, X., FAN, Q., LI, X., JIAO, L., LIANG, W. 2018. Harvesting of Chlorella vulgaris Using Fe3O4 Coated with Modified Plant Polyphenol. Environmental Science and Pollution Research,25(26), 26246–26258. https://doi.org/10.1007/s11356-018-2677-8.10.1007/s11356-018-2677-829978312Open DOISearch in Google Scholar

[52] ZHOU, W., MIN, M., HU, B., MA, X., LIU, Y., WANG, Q., SHI, J., CHEN, P., RUAN, R. 2013. Filamentous Fungi Assisted Bio-Flocculation: A Novel Alternative Technique for Harvesting Heterotrophic and Autotrophic Microalgal Cells. Separation and Purification Technology,107, 158–165. https://doi.org/10.1016/j.seppur.2013.01.030.10.1016/j.seppur.2013.01.030Open DOISearch in Google Scholar

eISSN:
1338-0532
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other