Microalgae Harvesting: A Review

Open access


Microalgae are photosynthetic autotrophic microscopic organisms growing in a range of aquatic and terrestrial habitats. They produce a huge complex of compounds in their surroundings which are of important use to humans. Their commercial use lies in human nutrition, animal and aquatic feed, in cosmetics products, natural pigments, pharmaceutical industry, bio-fertilizer for extracting high-value molecules, stable isotope biochemicals, and for the synthesis of antimicrobial, antiviral, antibacterial and anticancer drugs. Therefore, it is necessary to develop a simple, effective and economically advantageous method for harvesting the algal products. Magnetic separation is a simple separation process. Different synthesis methods have been used by researchers to obtain magnetic particles of varying size and shapes according to the algae to be studied. Chemical co-precipitation method has been the most commonly used method, which helps in synthesizing magnetic particles of the micro to nano range. Naked, coated and surface modified are the general types of magnetic particles used for algal harvesting with its own advantages and disadvantages.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] AGARWAL P. RITIKA G. AGARWAL N. 2019. Advances in Synthesis and Applications of Microalgal Nanoparticles for Wastewater Treatment. Journal of Nanotechnology 2019 1–9. https://doi.org/10.1155/2019/7392713.

  • [2] AMARO H. M. A. GUEDES C. MALCATA F. X. 2011. Advances and Perspectives in Using Microalgae to Produce Biodiesel. Applied Energy 88(10): 3402–3410. https://doi.org/10.1016/j.apenergy.2010.12.014.

  • [3] ANSARI F. A. SHEKH A. Y. GUPTA S. K. BUX F. 2017. Microalgae for Biofuels: Applications Process Contrains and Future Needs. Algal Biofuels: Recent Advances and Future Prospects 57–76. https://doi.org/10.1007/978-3-319-51010-1.

  • [4] BAJPAI P. 2019. Third Generation Biofuels. Springer Nature Singapore Pte Ltd. 2019. 87 p. ISBN 978-981-136-2378-2.

  • [5] BARROS A. I. GONÇALVES A. L. SIMÕES M. PIRES J. C.M. 2015. Harvesting Techniques Applied to Microalgae: A Review. Renewable and Sustainable Energy Reviews 41 1489–1500. https://doi.org/10.1016/j.rser.2014.09.037.

  • [6] BHARTE S. DESAI K. 2018. Harvesting Chlorella Species Using Magnetic Iron Oxide Nanoparticles. Phycological Research67(3) 128–133. https://doi.org/10.1111/pre.12358.

  • [7] CAI T. PARK S. Y. LI Y. 2013. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renewable and Sustainable Energy Reviews19 360–369. https://doi.org/10.1016/j.rser.2012.11.030.

  • [8] CERFF M. MORWEISER M. DILLSCHNEIDER R. MICHEL A. MENZEL K. POSTEN C. 2012. Harvesting Fresh Water and Marine Algae by Magnetic Separation: Screening of Separation Parameters and High Gradient Magnetic Filtration. Bioresource Technology118 289–295. https://doi.org/10.1016/j.biortech.2012.05.020.

  • [9] COLLOTTA M. CHAMPAGNE P. MABEE W. TOMASONI G. LEITE G. B. BUSI L. ALBERTI M. 2017. Comparative LCA of Flocculation for the Harvesting of Microalgae for Biofuels Production. Procedia CIRP61 756–760. https://doi.org/10.1016/j.procir.2016.11.146.

  • [10] DARVEHEI P. BAHRI P. A. MOHEIMANI N. R.. 2018. Model Development for the Growth of Microalgae: A Review. Renewable and Sustainable Energy Reviews97 233–258. https://doi.org/10.1016/j.rser.2018.08.027.

  • [11] DEMIRBAS A. 2010. Use of Algae as Biofuel Sources. Energy Conversion and Management51(12) 2738–2749. https://doi.org/10.1016/j.enconman.2010.06.010.

  • [12] ENAMALA M. K. ENAMALA S. CHAVALI M. DONEPUDI J. YADAVALLI R. KOLAPALLI B. ARADHYULA T. V. VELPURI J. KUPPAM Ch. 2018. Production of Biofuels from Microalgae - A Review on Cultivation Harvesting Lipid Extraction and Numerous Applications of Microalgae. Renewable and Sustainable Energy Reviews 94 49–68. https://doi.org/10.1016/j.rser.2018.05.012.

  • [13] FASAEI F. BITTER J. H. SLEGERS P. M. van BOXTEL A. J.B. 2018. Techno-Economic Evaluation of Microalgae Harvesting and Dewatering Systems. Algal Research31 347–362. https://doi.org/10.1016/j.algal.2017.11.038.

  • [14] FRAGA-GARCÍA P. KUBBUTAT P. BRAMMEN M. SCHWAMINGER S. BERENSMEIER S. 2018. Bare Iron Oxide Nanoparticles for Magnetic Harvesting of Microalgae: From Interaction Behavior to Process Realization. Nanomaterials 8(5) 1 - 17. https://doi.org/10.3390/nano8050292.

  • [15] GERULOVÁ K. BARTOŠOVÁ A. BLINOVÁ L. BÁRTOVÁ K. DOMÁNKOVÁ M. GARAIOVÁ Z. PALCUT M. 2018. Magnetic Fe3O4-Polyethyleneimine Nanocomposites for Efficient Harvesting of Chlorella zofingiensis Chlorella vulgaris Chlorella sorokiniana Chlorella ellipsoidea and Botryococcus braunii. Algal Research33 165–172. https://doi.org/10.1016/j.algal.2018.05.003.

  • [16] HAMED I. 2016. The Evolution and Versatility of Microalgal Biotechnology: A Review. Comprehensive Reviews in Food Science and Food Safety 15(6) 1104–1123. https://doi.org/10.1111/1541-4337.12227.

  • [17] HARUN R. SINGH M. FORDE G. M. DANQUAH M. K. 2010. Bioprocess Engineering of Microalgae to Produce a Variety of Consumer Products. Renewable and Sustainable Energy Reviews 14(3) 1037–1047. https://doi.org/10.1016/j.rser.2009.11.004.

  • [18] HOCHMAN G. ZILBERMAN D. 2014. Algae Farming and Its Bio-Products. In McCann M. Buckeridge M. Carpita N. (eds) Plants and BioEnergy. Advances in Plant Biology 4 Springer New York pp. 49-64. https://doi.org/10.1007/978-1-4614-9329-7.

  • [19] HU Y.-R. GUO CH. WANG F. WANG S.-K. PAN F. LIU CH.-Z. 2014. Improvement of Microalgae Harvesting by Magnetic Nanocomposites Coated with Polyethylenimine. Chemical Engineering Journal 242 341–347. https://doi.org/10.1016/j.cej.2013.12.066.

  • [20] HU Y.-R. WANG F. WANG S.-K. LIU CH.-Z. GUO CH. 2013. Efficient Harvesting of Marine Microalgae Nannochloropsis maritima Using Magnetic Nanoparticles. Bioresource Technology 138 387–390. https://doi.org/10.1016/j.biortech.2013.04.016.

  • [21] CHRISTENSON L. SIMS R. 2011. Production and Harvesting of Microalgae for Wastewater Treatment Biofuels and Bioproducts. Biotechnology Advances29(6) 686–702. https://doi.org/10.1016/j.biotechadv.2011.05.015.

  • [22] JIANG B. LIAN L. XING Y. ZHANG N. CHEN Y. LU P. ZHANG N. 2018. Advances of Magnetic Nanoparticles in Environmental Application: Environmental Remediation and (Bio)Sensors as Case Studies. Environmental Science and Pollution Research 25(31) 30863–30879. https://doi.org/10.1007/s11356-018-3095-7.

  • [23] JIANG Ch. WANG Ren MA W. 2010. The Effect of Magnetic Nanoparticles on Microcystis aeruginosa Removal by a Composite Coagulant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 369(1–3) 260–267. https://doi.org/10.1016/j.colsurfa.2010.08.033.

  • [24] KHAN M. I. SHIN J. H. KIM J. D. 2018. The Promising Future of Microalgae: Current Status Challenges and Optimization of a Sustainable and Renewable Industry for Biofuels Feed and Other Products. Microbial Cell Factories 17(1) 1–21. https://doi.org/10.1186/s12934-018-0879-x.

  • [25] LEE K. LEE S. Y. NA J.-G. JEON S.-G. PRAVEENKUMAR R. KIM D.-M. CHANG W.-S. OH Y.-K. 2013. Magnetophoretic Harvesting of Oleaginous Chlorella Sp. by Using Biocompatible Chitosan/Magnetic Nanoparticle Composites. Bioresource Technology149 575–578. https://doi.org/10.1016/j.biortech.2013.09.074.

  • [26] LEE K. LEE S. Y. PRAVEENKUMAR R. KIM B. SEO J. Y. JEON S. G. NA J.-G. PARK J.-Y. KIM D.-M. OH Y.-K. 2014. Repeated Use of Stable Magnetic Flocculant for Efficient Harvest of Oleaginous Chlorella Sp. Bioresource Technology 167 284–290. https://doi.org/10.1016/j.biortech.2014.06.055.

  • [27] LEITE G. B. ABDELAZIZ A. E.M. HALLENBECK P. C. 2013. Algal Biofuels: Challenges and Opportunities. Bioresource Technology 145 134–141. https://doi.org/10.1016/j.biortech.2013.02.007.

  • [28] LIU P.-R. WANG T. YANG Z.-Y. HONG Y. HOU Y.-L. 2017. Long-Chain Poly-Arginine Functionalized Porous Fe3O4 Microspheres as Magnetic Flocculant for Efficient Harvesting of Oleaginous Microalgae. Algal Research 27 99–108. https://doi.org/10.1016/j.algal.2017.08.025.

  • [29] LIU P.-R. ZHANG H.-L. WANG T. YANG W.-L. HONG Y. HOU Y.-L. 2016. Functional Graphene-Based Magnetic Nanocomposites as Magnetic Flocculant for Efficient Harvesting of Oleaginous Microalgae. Algal Research 19 86–95. https://doi.org/10.1016/j.algal.2016.07.008.

  • [30] MATHIMANI T. MALLICK N. 2018. A Comprehensive Review on Harvesting of Microalgae for Biodiesel - Key Challenges and Future Directions. Renewable and Sustainable Energy Reviews 91 1103–1120. https://doi.org/10.1016/j.rser.2018.04.083.

  • [31] MOBIN S. ALAM F. 2017. Some Promising Microalgal Species for Commercial Applications: A Review. Energy Procedia 110 510–517. https://doi.org/10.1016/j.egypro.2017.03.177.

  • [32] MOLINA GRIMA E. BELARBI E.-H. ACIÉN FERNÁNDEZ F. G. ROBLES MEDINA A. CHISTI Y. 2003. Recovery of Microalgal Biomass and Metabolites: Process Options and Economics. Biotechnology Advances 20(7–8) 491–515. http://www.ncbi.nlm.nih.gov/pubmed/14550018.

  • [33] PANDEY M. K. DASGUPTA CH. N. MISHRA S. SRIVASTAVA M. GUPTA V. K. SUSEELA M. R. RAMTEKE P. W. 2019. Bioprospecting Microalgae from Natural Algal Bloom for Sustainable Biomass and Biodiesel Production. Applied Microbiology and Biotechnology103 5447–5458. https://doi.org/10.1007/s00253-019-09856-2.

  • [34] PRAGYA N. PANDEY K. K. SAHOO P. K. 2013. A Review on Harvesting Oil Extraction and Biofuels Production Technologies from Microalgae. Renewable and Sustainable Energy Reviews 24 159–171. https://doi.org/10.1016/j.rser.2013.03.034.

  • [35] PROCHAZKOVÁ G. ŠAFÁRIK I. BRANYIK T. 2013. Harvesting Microalgae with Microwave Synthesized Magnetic Microparticles. Bioresource Technology130 472–477. https://doi.org/10.1016/j.biortech.2012.12.060.

  • [36] RASTOGI R. P. PANDEY A. LARROCHE CH. MADAMWAR D. 2018. Algal Green Energy – R&D and Technological Perspectives for Biodiesel Production. Renewable and Sustainable Energy Reviews 82 2946–2969. https://doi.org/10.1016/j.rser.2017.10.038.

  • [37] RIZWAN M. MUJTABA G. MEMON S. A. LEE K. RASHID N. 2018. Exploring the Potential of Microalgae for New Biotechnology Applications and beyond: A Review. Renewable and Sustainable Energy Reviews 92 394–404. https://doi.org/10.1016/j.rser.2018.04.034.

  • [38] SAXENA P. & Harish. 2018. Nanoecotoxicological Reports of Engineered Metal Oxide Nanoparticles on Algae. Current Pollution Reports 4(2) 128–142. https://doi.org/10.1007/s40726-018-0088-6.

  • [39] SEO J. Y. KIM M. G. LEE K. LEE Y.-C. NA J.-G. JEON S. G. PARK S. B. OH Y.-K. 2017. Multifunctional Nanoparticle Applications to Microalgal Biorefinery. In: Rai M. da Silva S. (eds) Nanotechnology for Bioenergy and Biofuel Production. Green Chemistry and Sustainable Technology. Springer Cham Switzerland. 370 p. ISBN 978-3-319-45459-7.

  • [40] SINGH G. PATIDAR S. K. 2018. Microalgae Harvesting Techniques: A Review. Journal of Environmental Management 217 499–508. https://doi.org/10.1016/j.jenvman.2018.04.010.

  • [41] SUN R. SUN P. ZHANG J. ESQUIVEL-ELIZONDO S. WU Y. 2018. Microorganisms-Based Methods for Harmful Algal Blooms Control: A Review. Bioresource Technology 248 12–20. https://doi.org/10.1016/j.biortech.2017.07.175.

  • [42] TAJABADI M. KHOSROSHAHI M. E.. 2013. Effect of Alkaline Media Concentration and Modification of Temperature on Magnetite Synthesis Method Using FeSO4/NH4OH. International Journal of Chemical Engineering and Applications 3(3) 206–210. https://doi.org/10.7763/ijcea.2012.v3.187.

  • [43] VALVERDE F. ROMERO-CAMPERO F. J. ROSA L. GUERRERO M. G. SERRANO A. 2016. New Challenges in Microalgae Biotechnology. European Journal of Protistology55 95–101. https://doi.org/10.1016/j.ejop.2016.03.002.

  • [44] WAN CH. ALAM M. A. ZHAO X.-Q. ZHANG X.-Y. GUO S.-L. HO S.-H. CHANG J.-S. BAI F.-W. 2015. Current Progress and Future Prospect of Microalgal Biomass Harvest Using Various Flocculation Technologies. Bioresource Technology184 251–257. https://doi.org/10.1016/j.biortech.2014.11.081.

  • [45] WANG S.-K. STILES A. R. GUO CH. LIU CH.-Z. 2015. Harvesting Microalgae by Magnetic Separation: A Review. Algal Research 9 178–185. https://doi.org/10.1016/j.algal.2015.03.005.

  • [46] WANG T. YANG W.-L. HONG Y. HOU Y.-L. 2016. Magnetic Nanoparticles Grafted with Amino-Riched Dendrimer as Magnetic Flocculant for Efficient Harvesting of Oleaginous Microalgae. Chemical Engineering Journal 297 304–314. https://doi.org/10.1016/j.cej.2016.03.038.

  • [47] XU L. GUO CH. WANG F. ZHENG S. LIU CH.-Z. 2011. A Simple and Rapid Harvesting Method for Microalgae by in Situ Magnetic Separation. Bioresource Technology 102(21) 10047–10051. https://doi.org/10.1016/j.biortech.2011.08.021.

  • [48] XU Y. Fu Y. ZHANG D. 2017. Cost-Effectiveness Analysis on Magnetic Harvesting of Algal Cells. Materials Today: Proceedings4 50–56. https://doi.org/10.1016/j.matpr.2017.01.192.

  • [49] YANG Y. HOU J. WANG P. WANG CH. MIAO L. AO Y. XU Y. et al. 2018. Interpretation of the Disparity in Harvesting Efficiency of Different Types of Microcystis Aeruginosa Using Polyethylenimine (PEI)-Coated Magnetic Nanoparticles. Algal Research 29 257–265. https://doi.org/10.1016/j.algal.2017.10.020.

  • [50] ZHAO Y. LIANG W. LIU L. LI F. FAN Q. SUN X. 2015. Harvesting Chlorella vulgaris by Magnetic Flocculation Using Fe3O4 coating with Polyaluminium Chloride and Polyacrylamide. Bioresource Technology 198 789–796. https://doi.org/10.1016/j.biortech.2015.09.087.

  • [51] ZHAO Y. WANG X. JIANG X. FAN Q. LI X. JIAO L. LIANG W. 2018. Harvesting of Chlorella vulgaris Using Fe3O4 Coated with Modified Plant Polyphenol. Environmental Science and Pollution Research 25(26) 26246–26258. https://doi.org/10.1007/s11356-018-2677-8.

  • [52] ZHOU W. MIN M. HU B. MA X. LIU Y. WANG Q. SHI J. CHEN P. RUAN R. 2013. Filamentous Fungi Assisted Bio-Flocculation: A Novel Alternative Technique for Harvesting Heterotrophic and Autotrophic Microalgal Cells. Separation and Purification Technology 107 158–165. https://doi.org/10.1016/j.seppur.2013.01.030.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 59 59 22
PDF Downloads 63 63 23