Survival, Growth and Mycorrhization of Containerised Pinus sylvestris and Picea abies Seedlings of Different Provenances Outplanted in a Forest Clear-Cut

Dārta Klaviņa 1 , Indriķis Muižnieks 2 , Imants Baumanis 1 , Jurģis Jansons 1 , Tālis Gaitnieks 1  and Audrius Menkis 3
  • 1 Latvian State Forest Research Institute “Silava”, , LV-2169, Salaspils, Latvia
  • 2 Faculty of Biology, University of Latvia, LV-1004, Riga, Latvia
  • 3 Uppsala BioCenter, Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden


We studied field performance of containerised Pinus sylvestris and Picea abies seedlings of different provenances. Shoot height, needle chemical composition, root collar diameter, root mycorrhization and mycorrhizal species composition were evaluated after four growing seasons following outplanting. The results showed that in general spruce had better survival than pine. Ectomycorrhizas on spruce were dominated by Wilcoxina, Amphinema and Tylospora, while on pine — by Suillus and Thelephora species. Spruce and pine showing best growth rates were colonised by ectomycorrhizal fungus Amphinema sp. In conclusion, the results demonstrated that forest nursery practices as well as provenance can significantly impact survival, growth and mycorrhization of the containerised pine and spruce seedlings.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Agerer, R. (1986–2006). Colour Atlas of Ectomycorrhizae. München, Germany, Einhorn-Verlag, Schwäbisch Gmünd.

  • Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucl. Acids Res., 25, 3389–3402.

  • Anonymous (1995). Normative documents for forest regeneration [Meža atjaunošanas normatīvie akti]. Riga, State Forest Service. 44 pp. (in Latvian).

  • Anonymous (2002). Micronutrients — Molybdenum. Forest Nursery Notes – 2002 Winter. Available at: (accessed 7 August 2015).

  • Anonymous (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Vienna, R Foundation for Statistical Computing. R Development Core Team. Available at: (accessed 5 December 2011).

  • Drozd, P. (2010). ComEcoPaC — Community Ecology Parameter Calculator. Available at: (accessed 10 January 2012).

  • Erland, S., Taylor, A. F. S. (2002). Diversity of ecto-mycorrhizal fungal communities in relation to the abiotic environment. In: Van der Heijden, M. G. A., Sanders, I. (eds.). Mycorrhizal Ecology. Berlin, Springer, pp. 163–200.

  • Flykt, E., Timonen, S., Pennanen, T. (2008). Variation of ectomycorrhizal colonisation in Norway spruce seedlings in Finnish forest nurseries. Silva Fennica, 42 (4), 571–585.

  • Fowler, J., Cohen, L., Jarvis, P. (1998). Practical Statistics for Field Biology. 2nd edn. New York, NY, Wiley. 259 pp.

  • Gailis, A. (1993). Norway spruce provenances in Latvia. In: Proceedings of IUFRO (S2.2-11) Symposium “Norway Spruce Provenances and Breeding”. Latvia, Latvian State Forest Research Institute “Silava”, pp. 44–49.

  • Gagné, A., Jany, J. L., Bousquet, J., Khasa, D. P. (2006). Ectomycorrhizal fungal communities of nursery-inoculated seedlings outplanted on clear-cut sites in northern Alberta. Canadian J. For. Res., 36 (7), 1684–1694.

  • Klavina, D., Gaitnieks, T., Menkis, A. (2013). Growth and ectomycorrhizal community development of containerised and bare-root Pinus sylvestris and Picea abies seedlings outplanted on a forest clear-cut. Baltic Forestry, 19, 39–49.

  • Klavina, D., Zaluma, A., Pennanen, T., Velmala, S., Gaitnieks, T., Gailis, A., Menkis, A. (2015). Seed provenance impacts growth and ectomycorrhizal colonisation of Picea abies seedlings. Baltic Forestry, 21 (2), 184–191.

  • Kõljalg, U. et al. (2013). Towards a unified paradigm for sequence-based identification of Fungi. Mol. Ecol., 22 (21), 5271–5277.

  • Korkama, T., Pakkanen, A., Pennanen, T. (2006). Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytologist, 171, 815–824.

  • Leski, T, Aučina, A., Skridaila, A., Pietras, M., Riepšas, E., Rudawska, M. (2010). Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions. Mycorrhiza, 20, 473–481.

  • Le Tacon, F., Alvarez, I. F., Bouchard, D., Henrion, B., Jackson, M. R., Luff, S., Parlade, I. J., Pera, J., Stenström, E., Villeneuve, N., Walker, C. (1994). Variations in field response of forest trees to nursery ectomycorrhizal inoculation in Europe. In: Read, D. J., Lewis, D. H., Fitter, A. H., Alexander, I. J. (eds). Mycorrhizas in Ecosystems. Wallingford, CAB, pp. 119–134.

  • Magurran, A. E. (1988). Ecological Diversity and Its Measurement. Princeton, NJ, Princeton University Press. 192 pp

  • Mead, R., Curnow, R. N. (1983). Statistical Methods in Agriculture and Experimental Miology. London, Chapman & Hall. 335 pp.

  • Menkis, A., Lygis, V., Burokienė, D., Vasaitis, R. (2012). Establishment of ectomycorrhiza-inoculated Pinus sylvestris seedlings on coastal dunes following a forest fire. Baltic Forestry, 18, 33–40.

  • Menkis, A., Vasaitis, R. (2011). Fungi in roots of nursery grown Pinus sylvestris: Ectomycorrhizal colonisation, genetic diversity and spatial distribution. Microbial Ecol., 61, 52–63.

  • Menkis, A., Vasiliauskas, R., Taylor, A. F. S., Stenlid, J., Finlay, R. (2007). Afforestation of abandoned farmland with conifer seedlings inoculated with three ectomycorrhizal fungi — impact on plant performance and ectomycorrhizal community. Mycorrhiza, 17, 337–348.

  • Neimane, U., Veinberga, I., Ruņģis, D. (2009). Phenotypic and genetic aspects of geographical differences in Scots pine populations of Latvia [Parastās priedes populāciju ģeogrāfisko atšķirību fenotipiskās un ģenētiskās īpašības Latvijas teritorijā]. Mežzinātne, 20 (53), 3–15 (in Latvian).

  • Nilsson, L. O., Wallander, H. (2003). Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytologist, 158 (2), 409–416.

  • Óskarsson, H., Brynleyfsdóttir, J. (2009). The interaction of fertilization in nursery and field on survival, growth and the frost heaving of birch and spruce. Iceland Agricult. Res., 22 (1), 58–68.

  • Stenström, E., Ek, M. (1990). Field growth of Pinus sylvestris following nursery inoculation with mycorrhizal fungi. Canadian J. For. Res., 20, 914–918.

  • Velmala, S. M., Rajala, T., Haapanen, M., Taylor, A. F. S., Pennanen, T. (2013). Genetic host-tree effects on the ectomycorrhizal community and root characteristics of Norway spruce. Mycorrhiza, 23, 21–33.

  • Wallander, H. (2000). Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil, 218, 249–256.

  • Wallander, H., Arnebrant, K., Ostrand, F., Kårén, O. (1997). Uptake of 15N-labelled alanine, ammonium and nitrate in Pinus sylvestris L. ectomycorrhiza growing in forest soil treated with nitrogen, sulphur or lime. Plant Soil, 195, 329–338.

  • White, T. J., Bruns, T., Lee, S., Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J., White, T. J. (eds.). PCR protocols: A Guide to Methods and Applications. San Diego, CA, Academic Press, Inc., pp. 315–322.

  • Ying, C. C. (1991). Preformance of Lodgepole pine provenances at sites in southwestern British Columbia. Silvae Genetica, 40, 215–223.


Journal + Issues