Temporal species turnover and plant community changes across different habitats in the Lake Engure Nature Park, Latvia

Open access

Abstract

Simultaneous monitoring of vegetation dynamics in different ecosystems has been rarely conducted but can provide important insights into mechanisms of vegetation dynamics in relation to vegetation structure and patterns. We compared the herb layer dynamics, species turnover, and species-time relationships across different habitats in a 12-year period in the ILTER monitoring station of the Lake Engure Nature Park, Latvia. Temporal species turnover was defined as diference in species composition in a community between two times. Species-time relationships were assessed using a sliding window approach. Species richness, cumulative species richness, and diversity changed more in species-rich non-forest habitats than in forests. Species turnover was highly different among habitats, and was not associated with the stability of habitats, as reported from other studies. The species-time relationship of six habitats was much lower than that reported in the literature. This could be explained by latitudinal gradients in species diversity and temporal turnover. At higher latitudes both species diversity and turnover is lower, and the mentioned habitats represent typical boreal vegetation. Vegetation dynamics in acidic grassland, dune slack, fen, and dune forest were interpreted as fluctuations. Vegetation changes in moist forest, dry forest, and coastal grassland showed clear signs of succession (xerophytisation and overgrowing). Vegetation dynamics of the beach community exhibited features of both natural succession and anthropogenic fluctuation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adler P. B. (2004). Neutral models fail to reproduce observed species-area and species-time relationships in Kansas grasslands. Ecology 85 (5) 1265-1272.

  • Adler P. B. Lauenroth W. K. (2003). The power of time: Spatiotemporal scaling of species diversity. Ecol. Lett. 6 749-756.

  • Anonymous (2007). Interpretation Manual of European Union Habitats. EUR 27. European Commission DG Environment.

  • Auniòð A. (Ed.) (2010). Eiropas Savienîbas aizsargâjamie biotopi Latvijâ. Noteikðanas rokasgrâmata [European Union Protected Habitats in Latvia. Manual]. Rîga: Latvijas Dabas fonds. 320 lpp. (in Latvian).

  • Auniòð A. Zviedre E. Brûmelis G. (2000). Preliminary results of remote sensing based vegetation mapping of Lake Engures (Engure) Latvia. Proc. Latvian Acad. Sci. Sect. B 54 (5/6) 170-176.

  • Baba W. (2004). The structure and dynamics in well-preserved and restored calcareous xerothermic grasslands (South Poland). Biologia 59 447-456.

  • Bakker J. P. Olff J. H. Willems Zobel M. (1996). Why do we need permanent plots in the study of long-term vegetation dynamics? J. Veg. Sci. 7 (2) 147-156.

  • Block W. M. Franklin A. B. Ward J. P. Ganey J. L. White G. C. (2001). Design and implementation of monitoring studies to evaluate the success of ecological restoration on wildlife. Restor. Ecol. 9 (3) 293-303.

  • Chytrý M. Sedláková I. Tichý L. (2001). Species richness and species turnover in a successional heathland. Appl. Veg. Sci. 4 89-96.

  • Eberhards G. Saltupe B. (2000). Geological history relief and deposits of the Lake Engures (Engure) area along the Baltic Sea. Proc. Latvian Acad. Sci. Sect. B 54 (5/6) 141-147.

  • Ellenberg H. (1996). Vegetation Mitteleuropas mit den Alpen. Stuttgart: Ulmer. 1095 pp.

  • Ellenberg H. Weber H. E. Düll R. Wirth V. Werner W. Paulißen D. (1992). Zeigerwerte von Pflanzen in Mitteleuropa. Göttingen: Verlag Erich Goltze KG. 258 pp.

  • Gaston K. J. Evans K. L. Lennon J. J. (2007). The scaling of spatial turnover: Pruning the sicket. In: Storch D. Marquet P. A. Brown J. H. (eds.). Scaling Biodiversity (pp. 181-222). Cambridge: Cambridge University Press.

  • Gavrilova G. Baroniòa V. (2000). Vascular plant flora of the Lake Engures (Engure) drainage basin Latvia and the coastal zone of the Gulf of Riga. Proc. Latvian Acad. Sci. Sect. B 54 (5/6) 177-189.

  • Gavrilova Ì. Ðulcs V. (1999). Latvijas vaskulâro augu flora. Taksonu saraksts [Flora of Vascular Plants of Latvia. List of taxa]. Rîga: Latvijas Akadçmiskâ bibliotçka.136 pp. (in Latvian).

  • Gavrilova G. Laiviòð M. Priede A. Medene A. (2011). Alien flora in the Lake Engure Nature Park. Proc. Latvian Acad. Sci. Sect. B 65 (5/6) 154-163.

  • Glenn-Lewin D. C. van der Maarel E. (1992). Patterns and processes of vegetation dynamics. In: Glenn-Lewin D. C. Peet R. K. Veblen T. T. (eds.). Plant Succession. Theory and Prediction (pp. 11-59). Population and Community Biology Series 11 Chapman & Hall.

  • Grime J. P. (2002). Plant Strategies Vegetation Processes and Ecosystem Properties. Chichester: John Wiley & Sons. 417 pp.

  • Grootjans A. P. Hartog P. S. Fresco L. F. M. Esselink H. (1991). Succession and fluctuation in a wet dune slack in relation to hydrological changes. J. Veg. Sci. 2 545-554.

  • Heinrichs S. Schulte U. Schmidt W. (2011). Eisbruch im Buchenwald- Untersuchungen zur Vegetationsdynamik der Naturwaldzelle „Ochsenberg“ (Eggegebirge/Nordrhein-Westfalen). Tuexenia 32 7-29.

  • Kent M. Coker P. (1994). Vegetation Description and Analysis. A Practical Approach. England: John Wiley & Sons. 363 pp.

  • Ketner-Oostra R. Sykora K. (2000). Vegetation succession and lichen diversity on dry coastal calcium-poor dunes and the impact of management experiments. J. Coastal Conserv. 6 (2) 191-206.

  • Ketner-Oostra R. Aptroot A. Jungerius P. D. Sykora K. V. (2012). Vegetation succession and habitat restoration in Dutch lichen-rich inland drift sands. Tuexenia 32 245-268.

  • Kïaviòð M. Kokorîte I. Rodinovs V. Avotniece Z. Spriòìe G. Briede A. (2011). Hydrometeorological parameters and aquatic chemistry of Lake Engure: Trends of changes due to human impact and natural variability. Proc. Latvian Acad. Sci. Sect. B 65 (5/6) 138-145.

  • Kollmann J. Rasmussen K. (2012). Succession of a degraded bog in NE Denmark over 164 years - monitoring one of the earliest restoration eksperiments. Tuexenia 32 67-85.

  • Krieger A. Porembski S. Barthlott W. (2003). Temporal dynamics of an ephemeral plant community: Species turnover in seasonal rock pools on Ivorian inselbergs. Plant Ecol. 167 283-292.

  • Kuiters A. T. (2013). Diversity-stability relationships in plant communities of contrasting habitats. J. Veg. Sci. 24 453-462.

  • Laime B. (2000). Seashore plant communities of the Lake Engures (Engure) Nature Park Latvia. Proc. Latvian Acad. Sci. Sect. B 54 (5/6) 190-196.

  • Laiviòð M. Gavrilova Ì. (2009). Biogeographic analysis of vascular flora in Ventspils and Daugavpils cities. Latvijas Veìetâcija 18 25-64.

  • Laiviòð M. Rûsiòa S. Frolova M. Lyulko I. (2007). Pine forest vegetation dynamics at ICP IM sites in Latvia. In: Kleemola S. Forsius M (eds.). 16th Annual Report 2007. UNECE Convention on Long-range Transboundary Air Pollution. International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems. Helsinki: Finnish Environment Institute. The Finnish Environment 26 37-54.

  • Laska G. (2001). The disturbance and vegetation dynamics: A review and an alternative framework. Plant Ecol. 157 77-99.

  • Magurran A. E. (2007). Species abundance distributions over time. Ecol. Letters 10 347-354.

  • Magurran A. E. (2010). Diversity over time. Folia Geobot. 43 (3) 319-327.

  • Magurran A.E. Bailie S. R. Buckland S. T. Dick J. M Elston D. A. Scott E. M. Smith R. I. Somerfiels P. J. Watt A. D. (2010). Long-term datasets in biodiversity research and monitoring: Assessing change in ecological communities through time (Review). Trends Ecol. Evol. 25 (10) 574-582.

  • McCune B. Grace B. J. B. (2002). Analysis of Ecological Communities. Oregan: MjM Software Design Gleneden Beach. 211 pp.

  • McCune B. Mefford M. J. (1999). PC-ORD. Multivariate Analysis of Ecological Data Version 4.0. Oregon: MjM Software Design Gleneden Beach. 237 pp.

  • Melecis V. (2011). Project on development of a conceptual integrated model of socioeconomic biodiversity pressures drivers and impacts for the long-term socioecological research platform of Latvia. Proc. Latvian Acad. Sci. Sect. B 65 (5/6) 206-212.

  • Melecis V. Karpa A. Spuòìis V. (2000). Assessment of the strategy used for insect population monitoring in the Lake engures (Engure) Nature Park Latvia. Proc. Latvian Acad. Sci. Sect. B 54 (5/6) 197-202.

  • Milberg P. Hansson M. L. (1993). Soil seed bank and species turnover in a limestone grassland. J. Veg. Sci. 4 35-42.

  • Ozinga W.A. Schaminée J. H. J. van Groenendael J. M. (2007). Long-term changes in species composition in the Netherlands in response to changing land-use. New Zealand: New Home; New Habitat! New Idea? 49th Annual Conference of the International Association for Vegetation Science. New Zealand: Palmerston North.

  • Pärtel M. Zobel M. (1995). Small-scale dynamics and species richness in successional alvar plant communities. Ecography 18 83-90.

  • Preston F.W. (1960). Time and space and the variation of species. Ecology 41 612-627.

  • Rodwell J. S. Schaminee J. H. J. Mucina L. Pignatti S. Dring J. Moss D. (2003). The diversity of European vegetation. National Reference Centre for Agriculture Nature and Fisheries Wageningen. 168 pp.

  • Rosenzweig M. L. (1995). Species Diversity in Space and Time. Cambridge: Cambridge University Press. 434 pp.

  • Russell G. J. (1998). Turnover dynamics across ecological and geological scales. In.: McKinney M. L. Drake J. A. (eds.). Biodiversity Dynamics. Turnover of Populations Taxa and Communities (pp. 377-404). New York: Columbia University Press.

  • Shurin J. B. (2007). How is diversity related to species turnover through time? Oikos 116 957-965.

  • Sival F. P. Grootjans A. P. Stuyfzand P. J. Verschoore de la Houssaye T. (1997). Variation in groundwater composition and decalcification depth in a dune slack: Effects on basiphilous vegetation. J. Coastal Conserv. 3 (1) 79-86.

  • Smits N. A. C. Schaminee J. H. J. van Duuren L. (2002). 70 years of permanent plot research in the Netherlands. Appl. Veg. Sci. 5 121-126.

  • Süss K. Storm C. Schwabe A. (2010). Sukzessionslinien in basenreicher offener Sandvegetation des Binnenlandes: Ergebnisse aus Untersuchungen von Dauerbeobachtungsflächen. Tuexenia 30 289-318.

  • Sýkora K. V. van den Bogert J. C. J. M. Berendse F. (2004). Changes in soil and vegetation during dune slack succession. J. Veg. Sci. 15 209-218. van der Maarel E. (1988). Species diversity in plant communities in relation to structure and dynamics. In: During H. J. Werger M. J. A. Willems J. H. (eds.). Diversity and Pattern in Plant Communities (pp. 1-14). The Hague: SPB Academic Publishing. van der Maarel E. Sykes M. T. (1993). Small-scale plant species turnover in a limestone grassland: The carousel model and some comments on the niche concept. J. Veg. Sci. 4 179-188.

  • Vîksne J. (1997). Engure - putnu ezers [Engure - Lake of Birds]. Rîga: Jâòa sçta. 225 pp. (in Latvian).

  • White E. P. Adler P. B. Lauenroth W. K. Gill R. A. Greenberg D. Kaufman D. M. Rassweiler A. Rusak J. A. Smith M. D. Steinbeck J. R. Waide R. B. Yao J. (2006).Acomparison of the species-time relationship across ecosystems and taxonomic groups. Oikos 112 185-195.

  • White E. P. Gilchrist M. A. (2007). Effects of population-level aggregation autocorrelation and interspecific association on the species-time relationship in two desert communities. Evol. Ecol. Res. 9 1329-1347.

  • Willems J. H. van Deft J. M. E. Rijke M. K. (1981). Observations on north-west European limestone grassland communities. IV. Phytosociological notes on chalk grasslands in Denmark. Folia Geobot. Phytotax. 16 391-406.

Search
Journal information
Impact Factor


CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 315 144 2
PDF Downloads 135 85 3