Eco-friendly production of metal nanoparticles immobilised on organic monolith for pepsin extraction

Eman Alzahrani 1  and Ashwaq T. Alkhudaidy 1
  • 1 Chemistry Department, Faculty of Science, Taif


Polymer monoliths modified by using nanoparticles (NPs) integrate high NP specific surface area with different monolith surface chemistry and high porosity. As a result, they have extensive applications within different fields, whereas nanomaterial-functionalised porous polymer monoliths have elicited considerable interest from investigators. This study is aimed at fabricating organic polymer-based monoliths from polybutyl methacrylate-co-ethylenedimethacrylate (BuMA-co-EDMA) monoliths prior to immobilization of gold or silver metal on the pore surface of the monoliths using reducing reagent (extracts of lemon peels). This was intended to denote a sustainable technique of immobilizing nanoparticles that are advantageous over physical and chemical techniques because it is safe in terms of handling, readily available, environmentally friendly, and cheap. Two different methods were used in the study to effectively immobilize nanoparticles on monolithic components. The outcomes showed that soaking the monolith rod in the prepared nano solution directly and placing it within ovens at temperatures of 80°C constituted the most effective method. Characterisation of the fabricated monolith was undertaken using SEM/EDX analysis, UV-vis. spectra analysis, and visual observation. The SEM analysis showed that nanoparticles were extensively immobilised on the surface polymers. Another peak was attained through EDX analysis, thus confirming the Au atom existence at 2.83% alongside another peak that proved the Ag atom existence at 1.92%. The fabricated components were used as sorbents for purifying protein. The ideal performance was achieved using gold nanoparticles (GNPs) immobilised organic monolith that attained a greater pepsin extraction recovery compared to silver nanoparticles (SNPs) immobilised organic monoliths alongside bare organic-based monolith.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Guiochon, G. (2007). Monolithic columns in high-performance liquid chromatography. J. Chromatogr. A. 1168(1–2), 101–168. DOI: 10.1016/j.chroma.2007.05.090.

  • 2. Svec, F. & Huber, C.G. (2006). Monolithic materials: Promises, challenges, achievements. Anal. Chem. 78(7), 2100–2107. DOI: 10.1021/ac069383v.

  • 3. Wang, J., Shen, S., Lu, X. & Ye, F. (2017). One-pot preparation of an organic polymer monolith by thiolene click chemistry for capillary electrochromatography. J. Separ. Sci. 40(15), 3144–3152. DOI: 10.1002/jssc.201700110.

  • 4. Kabir, A., Furton, K.G. & Malik, A. (2013). Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. TrAC Trends Anal. Chem. 45, 197–218. DOI: 10.1016/j.trac.2012.11.014.

  • 5. Zhu, T. & Row, K.H. (2012). Preparation and applications of hybrid organic–inorganic monoliths: a review. J. Separ Sci. 35(10–11), 1294–1302. DOI: 10.1002/jssc.201200084.

  • 6. Alves, F., Scholder, P. & Nischang, I. (2013). Conceptual design of large surface area porous polymeric hybrid media based on pogtytflyhedral oligomeric silsesquioxane precursors: Preparation, tailoring of porous properties, and internal surface functionalization. ACS Appl. Mater. Inter. 5(7), 2517–2526. DOI: 10.1021/am303048y.

  • 7. Svec, F. (2010). Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. J. Chromatogr. A, 1217(6), 902–924. DOI: 10.1016/j.chroma.2009.09.073.

  • 8. Cao, Q., Xu, Y., Liu, F., Svec, F. & Fréchet, J.M. (2010). Polymer monoliths with exchangeable chemistries: use of gold nanoparticles as intermediate ligands for capillary columns with varying surface functionalities. Anal. Chem. 82(17), 7416–7421. DOI: 10.1021/ac1015613.

  • 9. Ishizuka, N., Minakuchi, H., Nakanishi, K., Soga, N., Nagayama, H., Hosoya, K. & Tanaka, N. (2000). Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions. Anal. Chem. 72(6), 1275–1280. DOI: 10.1021/ac990942q.

  • 10. Iacono, M., Connolly, D. & Heise, A. (2016). Fabrication of a GMA-co-EDMA monolith in a 2.0 mm id polypropylene housing. Materials, 9(4), 263. DOI: 10.3390/ma9040263.

  • 11. Ishizuka, N. (2002). Monolithic silica columns for high-efficiency separations by high-performance liquid chromatography. J. Chromatogr. A, 960(1–2), 85–96. DOI: 10.1016/S0021-9673(01)01580-1.

  • 12. Masini, J.C. (2016). Semi-micro reversed-phase liquid chromatography for the separation of alkyl benzenes and proteins exploiting methacrylate-and polystyrene-based monolithic columns. J. Separ. Sci. 39(9), 1648–1655. DOI: 10.1002/jssc.201600049.

  • 13. Lv, C., Heiter, J., Haljasorg, T. & Leito, I. (2016). Covalent attachment of polymeric monolith to polyether ether ketone (PEEK) tubing. Anal. Chim. Acta, 932, 114–123. DOI: 10.1016/j.aca.2016.05.026.

  • 14. Shu, S., Kobayashi, H., Okubo, M., Sabarudin, A., Butsugan, M. & Umemura, T. (2012). Chemical anchoring of lauryl methacrylate-based reversed phase monolith to 1/16″o.d. polyetheretherketone tubing. J. Chromatogr. A, 1242, 59–66. DOI: 10.1016/j.chroma.2012.04.030.

  • 15. Masini, J.C. (2016). Separation of proteins by cation-exchange sequential injection chromatography using a polymeric monolithic column. Anal. Bioanal. Chem. 408(5), 1445–1452. DOI: 10.1007/s00216-015-9242-9.

  • 16. Svec, F. & Lv, Y. (2014). Advances and recent trends in the field of monolithic columns for chromatography. Anal. Chem. 87(1), 250–273. DOI: 10.1021/ac504059c.

  • 17. Krenkova, J. & Foret, F. (2011). Iron oxide nanoparticle coating of organic polymer-based monolithic columns for phosphopeptide enrichment. J. Separ. Sci. 34(16–17), 2106–2112. DOI: 10.1002/jssc.201100256.

  • 18. Currivan, S. & Jandera, P. (2014). Post-polymerization modifications of polymeric monolithic columns: a review. Chromatogr. 1(1), 24–53. DOI: 10.3390/chromatography1010024.

  • 19. Zhang, A., Ye, F., Lu, J. & Zhao. S. (2013). Screening α-glucosidase inhibitor from natural products by capillary electrophoresis with immobilised enzyme onto polymer monolith modified by gold nanoparticles. Food Chem. 141(3), 1854–1859. DOI: 10.1016/j.foodchem.2013.04.100.

  • 20. Groarke, R.J. & Brabazon, D.B. (2016). Methacrylate polymer monoliths for separation applications. Materials, 9(6), 446. DOI: 10.3390/ma9060446.

  • 21. Walsh, Z., Abele, S., Lawless, B., Heger, D., Klán, P., Breadmore, M.C., Paull, B. & Macka, M. (2008). Photoinitiated polymerisation of monolithic stationary phases in polyimide coated capillaries using visible region LEDs. Chem. Commun. 48, 6504–6506. DOI: 10.1039/b816958f.

  • 22. Wei, Z.-H., Mul, N., Huang, Y.P. & Liu, Z.S. (2017). Imprinted monoliths: recent significant progress in analysis field. TrAC Trends Anal. Chem. 86, 84–92. DOI: 10.1016/j. trac.2016.10.009.

  • 23. Walsh, Z., Levkin, P.A., Abele, S., Scarmagnani, S., Heger, D., Klán, P., Diamond, D., Paull, B., Svec, F. & Macka, M. (2011). Polymerisation and surface modification of methacry-late monoliths in polyimide channels and polyimide coated capillaries using 660 nm light emitting diodes. J. Chromatogr. A, 1218(20), 2954–2962. DOI: 10.1016/j.chroma.2011.03.021.

  • 24. Ahmed, M., Yajadda, M.M., Han, Z.J., Su, D., Wang, G., Ostrikov, K.K. & Ghanem, A. (2014). Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals. J. Chromatogr. A, 1360, 100–109. DOI: 10.1016/j. chroma.2014.07.052.

  • 25. Carrasco-Correa, E.J., Martínez-Vilata, A., Herrero-Martínez, J.M., Parra, J.B., Maya, F., Cerdà, V., Cabello, C.P., Palomino, G.T. & Svec, F. (2017). Incorporation of zeolitic imidazolate framework (ZIF-8)-derived nanoporous carbons in methacrylate polymeric monoliths for capillary electrochromatography. Talanta, 164, 348–354. DOI: 10.1016/j. talanta.2016.11.027.

  • 26. Ganewatta, N. & El Rassi, Z. (2018). Monolithic capillary columns consisting of poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) and their diol derivatives with incorporated hydroxyl functionalized multiwalled carbon nanotubes for reversed-phase capillary electrochromatography. Analyst, 143(1), 270–279. DOI: 10.1039/C7AN01426K.

  • 27. Ding, X., Yang, J. & Dong, Y. (2018). Advancements in the preparation of high-performance liquid chromatographic organic polymer monoliths for the separation of small-molecule drugs. J. Pharmac. Anal. 8(2), 75–85. DOI: 10.1016/j. jpha.2018.02.001.

  • 28. Hu, W., Hong, T., Gao, X. & Ji, Y. (2014). Applications of nanoparticle-modified stationary phases in capillary electro-chromatography. TrAC Trends in Anal. Chem. 61, 29–39. DOI: 10.1016/j.trac.2014.05.011.

  • 29. Krenkova, J., Foret, F. & Svec, F. (2012). Less common applications of monoliths: V. Monolithic scaffolds modified with nanostructures for chromatographic separations and tissue engineering. J. Sep. Sci. 35(10–11), 1266–1683. DOI: 10.1002/jssc.201100956.

  • 30. Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K. & Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific J. Tropical Biomed. 2(7), 574–580. DOI: 10.1016/S2221-1691(12)60100-2.

  • 31. Bunch, D.R. & Wang, S.W. (2013). Applications of monolithic solid-phase extraction in chromatography-based clinical chemistry assays. Anal. Bioanal. Chem. 405(10), 3021–3033. DOI: 10.1007/s00216-013-6761-0.

  • 32. Alzahrani, E.S. (2012). Investigation of monolithic materials for protein sample preparation. University of Hull.

  • 33. Aysha, O. & Najimu, S. (2014). Biosynthesis of silver nanoparticles, using Citrus limon (LINN.) Burm. F. Peel extract and its antibacterial property against selected urinary tract pathogens. J. Bio and Sci., Opi, 2(3), 248–252. DOI: 10.7897/2321-6328.02355.

  • 34. Alzahrani, E. & Welhman, K. (2014). Optimization preparation of the biosynthesis of silver nanoparticles using watermelon and study of itsantibacterial activity. Internat. J. Basic Appl. Sci. 3(4), 392. DOI: 10.14419/ijbas.v3i4.3358.

  • 35. Nakamoto, A., Nishida, M., Saito, T., Kishiyama, I., Miyazaki, S., Murakami, K., Nagao, M. & Namura, A. (2010). Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3, 4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection. Anal. Chim. Acta, 661(1), 42–46. DOI: 10.1016/j.aca.2009.12.013.

  • 36. Alzahrani, E. & Welham, K. (2011). Design and evaluation of synthetic silica-based monolithic materials in shrinkable tube for efficient protein extraction. Analyst, 136(20), 4321–4327. DOI: 10.1039/C1AN15447H.

  • 37. Nagaraju, D. & Huang, S.D. (2007). Determination of triazine herbicides in aqueous samples by dispersive liquid–liquid microextraction with gas chromatography–ion trap mass spectrometry. J. Chromatogr. A, 1161(1), 89–97. DOI: 10.1016/j. chroma.2007.05.065.

  • 38. Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F. & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr. A, 1116(1), 1–9. DOI: 10.1016/j. chroma.2006.03.007.

  • 39. Berijani, S., Assadi, Y., Anbia, M., Milani Hosseini, M.R. & Aghaee, E. (2006). Dispersive liquid–liquid microextraction combined with gas chromatography-flame photometric detection: Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J. Chromatogr. A, 1123(1), 1–9. DOI: 10.1016/j.chroma.2006.05.010.

  • 40. Tong, S., Liu, S., Wang, H. & Jia, Q. (2014). Recent advances of polymer monolithic columns functionalized with micro/nanomaterials: synthesis and application. Chromatogr. 77(1–2), 5–14. DOI: 10.1007/s10337-013-2564-x.

  • 41. Masini, J.C. & Svec, F. (2017). Porous monoliths for on-line sample preparation: a review. Anal. Chim. Acta. 964, 24–44. DOI: 10.1016/j.aca.2017.02.002.

  • 42. Lin, F.Y., Chen, W.Y. & Hearn, M.T. (2001). Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography: effects of salts, hydrophobicity of the sorbent, and structure of the protein. Anal. Chem. 73(16), 3875–3883. DOI: 10.1021/ac0102056.

  • 43. Benavente-García, O., Castillo, J., Marin, F.R., Ortuño, A. & Del Rio, J.A. (1997). Uses and properties of citrus flavonoids. J. Agric. Food Chem. 45(12), 4505–4515. DOI: 10.1021/jf970373s.

  • 44. Vinson, J.A., Su, X., Zubik, L. & Bose, P. (2001). Phenol antioxidant quantity and quality in foods: fruits. J. Agric. Food Chem. 49(11), 5315–5321. DOI: 10.1021/jf0009293.

  • 45. Vandercook, C.E., & Stephenson, R.G. (1966). Lemon juice composition. Identification of major phenolic compounds and estimation by paper chromatography. J. Agric. Food Chem. 14(5), 450–454. DOI: 10.1021/jf60147a003.

  • 46. Prathna, T.C., Chandrasekaran, N., Raichur, A.M. & Mukherjee, A. (2011). Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B: Biointerfaces, 82(1), 152–159. DOI: 10.1016/j.colsurfb.2010.08.036.

  • 47. Chuag, S.H., Chen, G.H., Chon, H.H., Shen, S.W. & Chen, C.F. (2013). Accelerated colourimetric immunosensing using surface-modified porous monoliths and gold nanoparticles. Sci. Technol. Adv. Mater. 14(4), 044403. DOI: 10.1088/1468-6996/14/4/044403.

  • 48. Ganewatta, N. & El Rassi, Z. (2018). Organic polymer-based monolithic stationary phases with incorporated nano-structured materials for HPLC and CEC. Electrophoresis, 39(1), 53–66. DOI: 10.1002/elps.201700312.

  • 49. Vergara-Barberán, M., Lerma-García, M.J., Simó-Alfonso, E.F. & Herrero-Martínez, J.M. (2016). Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins. Anal. Chim. Acta, 917, 37–43. DOI: 10.1016/j.aca.2016.02.043.

  • 50. Grzywiński, D., Szumski, M. & Buszewski, B. (2017). Polymer monoliths with silver nanoparticles-cholesterol conjugate as stationary phases for capillary liquid chromatography. J. Chromatogr. A, 1526, 93–103. DOI: 10.1016/j.chroma.2017.10.039.

  • 51. Lv, Y., Alejandro, F.M., Fréchet, J.M. & Svec, F. (2012). Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. J. Chromatogr. A, 1261, 121–128. DOI: 10.1016/j.chroma.2012.04.007.

  • 52. Sedlacek, O., Kucka, J., Svec, F. & Hruby, M. (2014). Silver-coated monolithic columns for separation in radiopharmaceutical applications. J. Separ. Sci. 37(7), 798–802. DOI: 10.1002/jssc.201301325.

  • 53. Acquah, C., Morfo Obeng, E., Agyei, D., Ongkudon, M.C., Moy, C.K.S. & Danquah, M.K. (2017). Nano-doped monolithic materials for molecular separation. Separations, 4(1), 2–22. DOI: 10.3390/separations4010002.

  • 54. Vergara-Barberán, M., Lerma-García, M.J., Simó-Alfonso, E.F. & Herrero-Martínez, J.M. (2017). Polymeric sorbents modified with gold and silver nanoparticles for solid-phase extraction of proteins followed by MALDI-TOF analysis. Microchim. Acta, 184(6), 1683–1690. DOI: 10.1007/s00604-017-2168-5.


Journal + Issues