Open Access

Eco-friendly production of metal nanoparticles immobilised on organic monolith for pepsin extraction


Cite

1. Guiochon, G. (2007). Monolithic columns in high-performance liquid chromatography. J. Chromatogr. A. 1168(1–2), 101–168. DOI: 10.1016/j.chroma.2007.05.090.10.1016/j.chroma.2007.05.09017640660Search in Google Scholar

2. Svec, F. & Huber, C.G. (2006). Monolithic materials: Promises, challenges, achievements. Anal. Chem. 78(7), 2100–2107. DOI: 10.1021/ac069383v.10.1021/ac069383v16791982Search in Google Scholar

3. Wang, J., Shen, S., Lu, X. & Ye, F. (2017). One-pot preparation of an organic polymer monolith by thiolene click chemistry for capillary electrochromatography. J. Separ. Sci. 40(15), 3144–3152. DOI: 10.1002/jssc.201700110.10.1002/jssc.20170011028586155Search in Google Scholar

4. Kabir, A., Furton, K.G. & Malik, A. (2013). Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. TrAC Trends Anal. Chem. 45, 197–218. DOI: 10.1016/j.trac.2012.11.014.10.1016/j.trac.2012.11.014Search in Google Scholar

5. Zhu, T. & Row, K.H. (2012). Preparation and applications of hybrid organic–inorganic monoliths: a review. J. Separ Sci. 35(10–11), 1294–1302. DOI: 10.1002/jssc.201200084.10.1002/jssc.20120008422733509Search in Google Scholar

6. Alves, F., Scholder, P. & Nischang, I. (2013). Conceptual design of large surface area porous polymeric hybrid media based on pogtytflyhedral oligomeric silsesquioxane precursors: Preparation, tailoring of porous properties, and internal surface functionalization. ACS Appl. Mater. Inter. 5(7), 2517–2526. DOI: 10.1021/am303048y.10.1021/am303048y362479523489022Search in Google Scholar

7. Svec, F. (2010). Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. J. Chromatogr. A, 1217(6), 902–924. DOI: 10.1016/j.chroma.2009.09.073.10.1016/j.chroma.2009.09.073282930419828151Search in Google Scholar

8. Cao, Q., Xu, Y., Liu, F., Svec, F. & Fréchet, J.M. (2010). Polymer monoliths with exchangeable chemistries: use of gold nanoparticles as intermediate ligands for capillary columns with varying surface functionalities. Anal. Chem. 82(17), 7416–7421. DOI: 10.1021/ac1015613.10.1021/ac101561320681590Search in Google Scholar

9. Ishizuka, N., Minakuchi, H., Nakanishi, K., Soga, N., Nagayama, H., Hosoya, K. & Tanaka, N. (2000). Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions. Anal. Chem. 72(6), 1275–1280. DOI: 10.1021/ac990942q.10.1021/ac990942q10740870Search in Google Scholar

10. Iacono, M., Connolly, D. & Heise, A. (2016). Fabrication of a GMA-co-EDMA monolith in a 2.0 mm id polypropylene housing. Materials, 9(4), 263. DOI: 10.3390/ma9040263.10.3390/ma9040263550292728773385Search in Google Scholar

11. Ishizuka, N. (2002). Monolithic silica columns for high-efficiency separations by high-performance liquid chromatography. J. Chromatogr. A, 960(1–2), 85–96. DOI: 10.1016/S0021-9673(01)01580-1.10.1016/S0021-9673(01)01580-1Search in Google Scholar

12. Masini, J.C. (2016). Semi-micro reversed-phase liquid chromatography for the separation of alkyl benzenes and proteins exploiting methacrylate-and polystyrene-based monolithic columns. J. Separ. Sci. 39(9), 1648–1655. DOI: 10.1002/jssc.201600049.10.1002/jssc.20160004926960001Search in Google Scholar

13. Lv, C., Heiter, J., Haljasorg, T. & Leito, I. (2016). Covalent attachment of polymeric monolith to polyether ether ketone (PEEK) tubing. Anal. Chim. Acta, 932, 114–123. DOI: 10.1016/j.aca.2016.05.026.10.1016/j.aca.2016.05.02627286776Search in Google Scholar

14. Shu, S., Kobayashi, H., Okubo, M., Sabarudin, A., Butsugan, M. & Umemura, T. (2012). Chemical anchoring of lauryl methacrylate-based reversed phase monolith to 1/16″o.d. polyetheretherketone tubing. J. Chromatogr. A, 1242, 59–66. DOI: 10.1016/j.chroma.2012.04.030.10.1016/j.chroma.2012.04.03022560348Search in Google Scholar

15. Masini, J.C. (2016). Separation of proteins by cation-exchange sequential injection chromatography using a polymeric monolithic column. Anal. Bioanal. Chem. 408(5), 1445–1452. DOI: 10.1007/s00216-015-9242-9.10.1007/s00216-015-9242-926677024Search in Google Scholar

16. Svec, F. & Lv, Y. (2014). Advances and recent trends in the field of monolithic columns for chromatography. Anal. Chem. 87(1), 250–273. DOI: 10.1021/ac504059c.10.1021/ac504059c25375665Search in Google Scholar

17. Krenkova, J. & Foret, F. (2011). Iron oxide nanoparticle coating of organic polymer-based monolithic columns for phosphopeptide enrichment. J. Separ. Sci. 34(16–17), 2106–2112. DOI: 10.1002/jssc.201100256.10.1002/jssc.20110025621560247Search in Google Scholar

18. Currivan, S. & Jandera, P. (2014). Post-polymerization modifications of polymeric monolithic columns: a review. Chromatogr. 1(1), 24–53. DOI: 10.3390/chromatography1010024.10.3390/chromatography1010024Search in Google Scholar

19. Zhang, A., Ye, F., Lu, J. & Zhao. S. (2013). Screening α-glucosidase inhibitor from natural products by capillary electrophoresis with immobilised enzyme onto polymer monolith modified by gold nanoparticles. Food Chem. 141(3), 1854–1859. DOI: 10.1016/j.foodchem.2013.04.100.10.1016/j.foodchem.2013.04.10023870901Search in Google Scholar

20. Groarke, R.J. & Brabazon, D.B. (2016). Methacrylate polymer monoliths for separation applications. Materials, 9(6), 446. DOI: 10.3390/ma9060446.10.3390/ma9060446545682328773570Search in Google Scholar

21. Walsh, Z., Abele, S., Lawless, B., Heger, D., Klán, P., Breadmore, M.C., Paull, B. & Macka, M. (2008). Photoinitiated polymerisation of monolithic stationary phases in polyimide coated capillaries using visible region LEDs. Chem. Commun. 48, 6504–6506. DOI: 10.1039/b816958f.10.1039/b816958fSearch in Google Scholar

22. Wei, Z.-H., Mul, N., Huang, Y.P. & Liu, Z.S. (2017). Imprinted monoliths: recent significant progress in analysis field. TrAC Trends Anal. Chem. 86, 84–92. DOI: 10.1016/j. trac.2016.10.009.Search in Google Scholar

23. Walsh, Z., Levkin, P.A., Abele, S., Scarmagnani, S., Heger, D., Klán, P., Diamond, D., Paull, B., Svec, F. & Macka, M. (2011). Polymerisation and surface modification of methacry-late monoliths in polyimide channels and polyimide coated capillaries using 660 nm light emitting diodes. J. Chromatogr. A, 1218(20), 2954–2962. DOI: 10.1016/j.chroma.2011.03.021.10.1016/j.chroma.2011.03.021Search in Google Scholar

24. Ahmed, M., Yajadda, M.M., Han, Z.J., Su, D., Wang, G., Ostrikov, K.K. & Ghanem, A. (2014). Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals. J. Chromatogr. A, 1360, 100–109. DOI: 10.1016/j. chroma.2014.07.052.Search in Google Scholar

25. Carrasco-Correa, E.J., Martínez-Vilata, A., Herrero-Martínez, J.M., Parra, J.B., Maya, F., Cerdà, V., Cabello, C.P., Palomino, G.T. & Svec, F. (2017). Incorporation of zeolitic imidazolate framework (ZIF-8)-derived nanoporous carbons in methacrylate polymeric monoliths for capillary electrochromatography. Talanta, 164, 348–354. DOI: 10.1016/j. talanta.2016.11.027.Search in Google Scholar

26. Ganewatta, N. & El Rassi, Z. (2018). Monolithic capillary columns consisting of poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) and their diol derivatives with incorporated hydroxyl functionalized multiwalled carbon nanotubes for reversed-phase capillary electrochromatography. Analyst, 143(1), 270–279. DOI: 10.1039/C7AN01426K.10.1039/C7AN01426KSearch in Google Scholar

27. Ding, X., Yang, J. & Dong, Y. (2018). Advancements in the preparation of high-performance liquid chromatographic organic polymer monoliths for the separation of small-molecule drugs. J. Pharmac. Anal. 8(2), 75–85. DOI: 10.1016/j. jpha.2018.02.001.Search in Google Scholar

28. Hu, W., Hong, T., Gao, X. & Ji, Y. (2014). Applications of nanoparticle-modified stationary phases in capillary electro-chromatography. TrAC Trends in Anal. Chem. 61, 29–39. DOI: 10.1016/j.trac.2014.05.011.10.1016/j.trac.2014.05.011Search in Google Scholar

29. Krenkova, J., Foret, F. & Svec, F. (2012). Less common applications of monoliths: V. Monolithic scaffolds modified with nanostructures for chromatographic separations and tissue engineering. J. Sep. Sci. 35(10–11), 1266–1683. DOI: 10.1002/jssc.201100956.10.1002/jssc.201100956Search in Google Scholar

30. Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K. & Thangamani, S. (2012). Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific J. Tropical Biomed. 2(7), 574–580. DOI: 10.1016/S2221-1691(12)60100-2.10.1016/S2221-1691(12)60100-2Search in Google Scholar

31. Bunch, D.R. & Wang, S.W. (2013). Applications of monolithic solid-phase extraction in chromatography-based clinical chemistry assays. Anal. Bioanal. Chem. 405(10), 3021–3033. DOI: 10.1007/s00216-013-6761-0.10.1007/s00216-013-6761-023380951Search in Google Scholar

32. Alzahrani, E.S. (2012). Investigation of monolithic materials for protein sample preparation. University of Hull.Search in Google Scholar

33. Aysha, O. & Najimu, S. (2014). Biosynthesis of silver nanoparticles, using Citrus limon (LINN.) Burm. F. Peel extract and its antibacterial property against selected urinary tract pathogens. J. Bio and Sci., Opi, 2(3), 248–252. DOI: 10.7897/2321-6328.02355.10.7897/2321-6328.02355Search in Google Scholar

34. Alzahrani, E. & Welhman, K. (2014). Optimization preparation of the biosynthesis of silver nanoparticles using watermelon and study of itsantibacterial activity. Internat. J. Basic Appl. Sci. 3(4), 392. DOI: 10.14419/ijbas.v3i4.3358.10.14419/ijbas.v3i4.3358Search in Google Scholar

35. Nakamoto, A., Nishida, M., Saito, T., Kishiyama, I., Miyazaki, S., Murakami, K., Nagao, M. & Namura, A. (2010). Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3, 4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection. Anal. Chim. Acta, 661(1), 42–46. DOI: 10.1016/j.aca.2009.12.013.10.1016/j.aca.2009.12.01320113714Search in Google Scholar

36. Alzahrani, E. & Welham, K. (2011). Design and evaluation of synthetic silica-based monolithic materials in shrinkable tube for efficient protein extraction. Analyst, 136(20), 4321–4327. DOI: 10.1039/C1AN15447H.10.1039/c1an15447h21863168Search in Google Scholar

37. Nagaraju, D. & Huang, S.D. (2007). Determination of triazine herbicides in aqueous samples by dispersive liquid–liquid microextraction with gas chromatography–ion trap mass spectrometry. J. Chromatogr. A, 1161(1), 89–97. DOI: 10.1016/j. chroma.2007.05.065.Search in Google Scholar

38. Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F. & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. J. Chromatogr. A, 1116(1), 1–9. DOI: 10.1016/j. chroma.2006.03.007.Search in Google Scholar

39. Berijani, S., Assadi, Y., Anbia, M., Milani Hosseini, M.R. & Aghaee, E. (2006). Dispersive liquid–liquid microextraction combined with gas chromatography-flame photometric detection: Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J. Chromatogr. A, 1123(1), 1–9. DOI: 10.1016/j.chroma.2006.05.010.10.1016/j.chroma.2006.05.01016716329Search in Google Scholar

40. Tong, S., Liu, S., Wang, H. & Jia, Q. (2014). Recent advances of polymer monolithic columns functionalized with micro/nanomaterials: synthesis and application. Chromatogr. 77(1–2), 5–14. DOI: 10.1007/s10337-013-2564-x.10.1007/s10337-013-2564-xSearch in Google Scholar

41. Masini, J.C. & Svec, F. (2017). Porous monoliths for on-line sample preparation: a review. Anal. Chim. Acta. 964, 24–44. DOI: 10.1016/j.aca.2017.02.002.10.1016/j.aca.2017.02.00228351637Search in Google Scholar

42. Lin, F.Y., Chen, W.Y. & Hearn, M.T. (2001). Microcalorimetric studies on the interaction mechanism between proteins and hydrophobic solid surfaces in hydrophobic interaction chromatography: effects of salts, hydrophobicity of the sorbent, and structure of the protein. Anal. Chem. 73(16), 3875–3883. DOI: 10.1021/ac0102056.10.1021/ac010205611534710Search in Google Scholar

43. Benavente-García, O., Castillo, J., Marin, F.R., Ortuño, A. & Del Rio, J.A. (1997). Uses and properties of citrus flavonoids. J. Agric. Food Chem. 45(12), 4505–4515. DOI: 10.1021/jf970373s.10.1021/jf970373sSearch in Google Scholar

44. Vinson, J.A., Su, X., Zubik, L. & Bose, P. (2001). Phenol antioxidant quantity and quality in foods: fruits. J. Agric. Food Chem. 49(11), 5315–5321. DOI: 10.1021/jf0009293.10.1021/jf000929311714322Search in Google Scholar

45. Vandercook, C.E., & Stephenson, R.G. (1966). Lemon juice composition. Identification of major phenolic compounds and estimation by paper chromatography. J. Agric. Food Chem. 14(5), 450–454. DOI: 10.1021/jf60147a003.10.1021/jf60147a003Search in Google Scholar

46. Prathna, T.C., Chandrasekaran, N., Raichur, A.M. & Mukherjee, A. (2011). Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf. B: Biointerfaces, 82(1), 152–159. DOI: 10.1016/j.colsurfb.2010.08.036.10.1016/j.colsurfb.2010.08.03620833002Search in Google Scholar

47. Chuag, S.H., Chen, G.H., Chon, H.H., Shen, S.W. & Chen, C.F. (2013). Accelerated colourimetric immunosensing using surface-modified porous monoliths and gold nanoparticles. Sci. Technol. Adv. Mater. 14(4), 044403. DOI: 10.1088/1468-6996/14/4/044403.10.1088/1468-6996/14/4/044403509031427877588Search in Google Scholar

48. Ganewatta, N. & El Rassi, Z. (2018). Organic polymer-based monolithic stationary phases with incorporated nano-structured materials for HPLC and CEC. Electrophoresis, 39(1), 53–66. DOI: 10.1002/elps.201700312.10.1002/elps.20170031228926678Search in Google Scholar

49. Vergara-Barberán, M., Lerma-García, M.J., Simó-Alfonso, E.F. & Herrero-Martínez, J.M. (2016). Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins. Anal. Chim. Acta, 917, 37–43. DOI: 10.1016/j.aca.2016.02.043.10.1016/j.aca.2016.02.04327026598Search in Google Scholar

50. Grzywiński, D., Szumski, M. & Buszewski, B. (2017). Polymer monoliths with silver nanoparticles-cholesterol conjugate as stationary phases for capillary liquid chromatography. J. Chromatogr. A, 1526, 93–103. DOI: 10.1016/j.chroma.2017.10.039.10.1016/j.chroma.2017.10.03929056273Search in Google Scholar

51. Lv, Y., Alejandro, F.M., Fréchet, J.M. & Svec, F. (2012). Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. J. Chromatogr. A, 1261, 121–128. DOI: 10.1016/j.chroma.2012.04.007.10.1016/j.chroma.2012.04.007342431722542442Search in Google Scholar

52. Sedlacek, O., Kucka, J., Svec, F. & Hruby, M. (2014). Silver-coated monolithic columns for separation in radiopharmaceutical applications. J. Separ. Sci. 37(7), 798–802. DOI: 10.1002/jssc.201301325.10.1002/jssc.20130132524478196Search in Google Scholar

53. Acquah, C., Morfo Obeng, E., Agyei, D., Ongkudon, M.C., Moy, C.K.S. & Danquah, M.K. (2017). Nano-doped monolithic materials for molecular separation. Separations, 4(1), 2–22. DOI: 10.3390/separations4010002.10.3390/separations4010002Search in Google Scholar

54. Vergara-Barberán, M., Lerma-García, M.J., Simó-Alfonso, E.F. & Herrero-Martínez, J.M. (2017). Polymeric sorbents modified with gold and silver nanoparticles for solid-phase extraction of proteins followed by MALDI-TOF analysis. Microchim. Acta, 184(6), 1683–1690. DOI: 10.1007/s00604-017-2168-5.10.1007/s00604-017-2168-5Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering