Prediction of the fixed-bed reactor behavior for biotransformation with parallel enzyme deactivation using dispersion model: A case study on hydrogen peroxide decomposition by commercial catalase

Open access


The problems of process costs and pollution of residual waters in the textile industry require increasing attention due to the new ecological regulations and also those resulting from an economic point of view. Hence, the behavior of non-isothermal fixed-bed reactor applied for hydrogen peroxide decomposition by immobilized Terminox Ultra catalase attached onto the outer surface of glass beads was studied to determine the operational conditions at which hydrogen peroxide decomposition is most effectively. A dispersion model for bioreactor applied in this work, and verified experimentally, took into account the coupled mass and heat balances as well as the rate equation for parallel enzyme deactivation. The effect of feed temperature, feed flow rate, feed hydrogen peroxide concentration, and diffusional resistances were analysed. In the calculations the global effectiveness factor based on the external mass-transfer model developed previously was employed to properly predict the real bioreactor behavior.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Maria G. (2012). Enzymatic reactor selection and derivation of the optimal operation policy by using a model-based modular simulation platform. Comput. Chem. Eng. 36(0) 325–341. DOI: 10.1016/j.compchemeng.2011.06.006.

  • 2. Maria G. & Crisan M. (2015). Evaluation of optimal operation alternatives of reactors used for d-glucose oxidation in a bi-enzymatic system with a complex deactivation kinetics. Asia – Pac. J. Chem. Eng. 10(1) 22–4 4. DOI: 10.1002/apj.1825.

  • 3. Berendsen W.R. Lapin A. & Reuss M. (2007). Nonisothermal lipase-catalyzed kinetic resolution in a packed bed reactor: Modeling simulation and miniplant studies. Chem. Eng. Sci. 62(9) 2375–2385. DOI: 10.1016/j.ces.2007.01.006.

  • 4. Grubecki I. (2016). How to run biotransformations—At the optimal temperature control or isothermally? Mathematical assessment. J. Proc. Control 44(0) 79–91. DOI: 10.1016/j.jprocont.2016.05.005.

  • 5. Tükel S.S. Hürrem F. Yildirim D. & Alptekin Ö. (2013). Preparation of crosslinked enzyme aggregates (CLEA) of catalase and its characterization. J. Mol. Catal. B: Enzym. 97(0) 252–257. DOI: 10.1016/j.molcatb.2013.09.007.

  • 6. Grigoras A.G. (2017). Catalase immobilization—A review. Biochem. Eng. J. 117 Part B(0) 1–20. DOI: 10.1016/j.bej.2016.10.021.

  • 7. Grubecki I. (2017). External mass transfer model for hydrogen peroxide decomposition by Terminox Ultra catalase in a packed-bed reactor. Chem. Proc. Eng. 38(2) 307–319. DOI: 10.1515/cpe-2017-0024.

  • 8. Do D.D. & Weiland R.H. (1981). Fixed bed reactors with catalyst poisoning: First order kinetics. Chem. Eng. Sci. 36(1) 97–104. DOI: 10.1016/0009-2509(81)80051-6.

  • 9. Do D.D. & Weiland R.H. (1981). Enzyme deactivation in fixed bed reactors with michaelis-menten kinetics. Biotechnol. Bioeng. 23(4) 691–705. DO I: 10.1002/bit.260230404.

  • 10. Do D.D. (1984). Enzyme deactivation studies in a continuous stirred basket reactor. Chem. Eng. J. 28(3) B51-B60. DOI: 10.1016/0300-9467(84)85063-7.

  • 11. Do D.D. & Weiland R.H. (1981). Deactivation of single catalyst particles at large Thiele modulus. Travelling wave solutions. Ind. Eng. Chem. Fundam. 20(1) 48–54. DOI: 10.1021/i100001a009.

  • 12. Costa S.A. Tzanov T. Filipa Carneiro A. Paar A. Gübitz G.M. & Cavaco-Paulo A. (2002). Studies of stabilization of native catalase using additives. Enzyme Microb. Technol. 30(3) 387–391. DOI: 10.1016/S0141-0229(01)00505-1.

  • 13. Alptekin Ö. Seyhan Tükel S. Yildirim D. & Alagöz D. (2011). Covalent immobilization of catalase onto spacer-arm attached modified florisil: Characterization and application to batch and plug-flow type reactor systems. Enzyme Microb. Technol. 49(6–7) 547–554. DOI: 10.1016/j.enzmictec.2011.09.002.

  • 14. Trusek-Hołownia A. & Noworyta A. (2015). Efficient utilisation of hydrogel preparations with encapsulated enzymes – a case study on catalase and hydrogen peroxide degradation. Biotechnol. Rep. 6(0) 13–19. DOI: 10.1016/j.btre.2014.12.012.

  • 15. Ladero M. Santos A. & García-Ochoa F. (2001). Diffusion and chemical reaction rates with nonuniform enzyme distribution: An experimental approach. Biotechnol. Bioeng. 72(4) 458–467. DOI: 10.1002/1097-0290(20000220)72:4<458::AIDBIT1007>3.0.CO;2-R.

  • 16. Ogura Y. (1955). Catalase activity at high concentration of hydrogen peroxide. Archives of Biochemistry and Biophysics 57(2) 288–300. DOI: 10.1016/0003-9861(55)90291-5.

  • 17. Vasudevan P.T. & Weiland R.H. (1990). Deactivation of catalase by hydrogen peroxide. Biotechnol. Bioeng. 36(8) 783–789. DO I: 10.1002/bit.260360805.

  • 18. Sherwood T.G. Pigford R.L. & Wilke C.R. Mass Transfer in: Clark B.J. Maisel J.W. (Eds.). New York US A McGraw-Hill Inc.; 1975.

  • 19. Shen L. & Chen Z. (2007). Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62(14) 3748–3755. DOI: 10.1016/j.ces.2007.03.041.

  • 20. Do D.D. & Hossain M.M. (1987). A new method to determine active enzyme distribution effective diffusivity rate constant for main reaction and rate constant for deactivation. Biotechnol. Bioeng. 29(5) 545–551. DO I: 10.1002/bit.260290502.

  • 21. Martin A.D. (2000). Interpretation of residence time distribution data. Chem. Eng. Sci. 55(23) 5907–5917. DOI: 10.1016/S0009-2509(00)00108-1.

  • 22. Testu A. Didierjean S. Maillet D. Moyne C. Metzger T. & Niass T. (2007). Thermal dispersion for water or air flow through a bed of glass beads. Int. J. Heat Mass Transfer 50(7–8) 1469–1484. DOI: 10.1016/j.ijheatmasstransfer.2006.09.002.

  • 23. Eissen M. Zogg A. & Hungerbühler K. (2003). The runaway scenario in the assessment of thermal safety: simple experimental access by means of the catalytic decomposition of H2O2. J. Loss Prevent. Proc. 16(4) 289–296. DOI: 10.1016/S0950-4230(03)00022-6.

  • 24. Dixon A.G. & Cresswell D.L. (1979). Theoretical prediction of effective heat transfer parameters in packed beds. AlChE J. 25(4) 663–676. DO I: 10.1002/aic.690250413.

  • 25. Lin S.H. (1991). Optimal feed temperature for an immobilized enzyme packed-bed reactor. J. Chem. Technol. Biotechnol. 50(1) 17–26. DOI: 10.1002/jctb.280500104.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 63 37
PDF Downloads 75 75 43