Open Access

Prediction of the fixed-bed reactor behavior for biotransformation with parallel enzyme deactivation using dispersion model: A case study on hydrogen peroxide decomposition by commercial catalase


Cite

1. Maria, G. (2012). Enzymatic reactor selection and derivation of the optimal operation policy, by using a model-based modular simulation platform. Comput. Chem. Eng. 36(0), 325–341. DOI: 10.1016/j.compchemeng.2011.06.006.10.1016/j.compchemeng.2011.06.006Search in Google Scholar

2. Maria, G. & Crisan M. (2015). Evaluation of optimal operation alternatives of reactors used for d-glucose oxidation in a bi-enzymatic system with a complex deactivation kinetics. Asia – Pac. J. Chem. Eng. 10(1), 22–4 4. DOI: 10.1002/apj.1825.10.1002/apj.1825Open DOISearch in Google Scholar

3. Berendsen, W.R., Lapin, A. & Reuss, M. (2007). Nonisothermal lipase-catalyzed kinetic resolution in a packed bed reactor: Modeling, simulation and miniplant studies. Chem. Eng. Sci. 62(9), 2375–2385. DOI: 10.1016/j.ces.2007.01.006.10.1016/j.ces.2007.01.006Open DOISearch in Google Scholar

4. Grubecki, I. (2016). How to run biotransformations—At the optimal temperature control or isothermally? Mathematical assessment. J. Proc. Control 44(0), 79–91. DOI: 10.1016/j.jprocont.2016.05.005.10.1016/j.jprocont.2016.05.005Search in Google Scholar

5. Tükel, S.S., Hürrem, F., Yildirim, D. & Alptekin, Ö. (2013). Preparation of crosslinked enzyme aggregates (CLEA) of catalase and its characterization. J. Mol. Catal. B: Enzym. 97(0), 252–257. DOI: 10.1016/j.molcatb.2013.09.007.10.1016/j.molcatb.2013.09.007Search in Google Scholar

6. Grigoras, A.G. (2017). Catalase immobilization—A review. Biochem. Eng. J. 117, Part B(0), 1–20. DOI: 10.1016/j.bej.2016.10.021.10.1016/j.bej.2016.10.021Search in Google Scholar

7. Grubecki, I. (2017). External mass transfer model for hydrogen peroxide decomposition by Terminox Ultra catalase in a packed-bed reactor. Chem. Proc. Eng. 38(2), 307–319. DOI: 10.1515/cpe-2017-0024.10.1515/cpe-2017-0024Open DOISearch in Google Scholar

8. Do, D.D. & Weiland, R.H. (1981). Fixed bed reactors with catalyst poisoning: First order kinetics. Chem. Eng. Sci. 36(1), 97–104. DOI: 10.1016/0009-2509(81)80051-6.10.1016/0009-2509(81)80051-6Search in Google Scholar

9. Do, D.D. & Weiland, R.H. (1981). Enzyme deactivation in fixed bed reactors with michaelis-menten kinetics. Biotechnol. Bioeng. 23(4), 691–705. DO I: 10.1002/bit.260230404.10.1002/bit.260230404Search in Google Scholar

10. Do, D.D. (1984). Enzyme deactivation studies in a continuous stirred basket reactor. Chem. Eng. J. 28(3), B51-B60. DOI: 10.1016/0300-9467(84)85063-7.10.1016/0300-9467(84)85063-7Search in Google Scholar

11. Do, D.D. & Weiland, R.H. (1981). Deactivation of single catalyst particles at large Thiele modulus. Travelling wave solutions. Ind. Eng. Chem. Fundam. 20(1), 48–54. DOI: 10.1021/i100001a009.10.1021/i100001a009Open DOISearch in Google Scholar

12. Costa, S.A., Tzanov, T., Filipa Carneiro, A., Paar, A., Gübitz, G.M. & Cavaco-Paulo, A. (2002). Studies of stabilization of native catalase using additives. Enzyme Microb. Technol. 30(3), 387–391. DOI: 10.1016/S0141-0229(01)00505-1.10.1016/S0141-0229(01)00505-1Open DOISearch in Google Scholar

13. Alptekin, Ö., Seyhan Tükel, S., Yildirim, D. & Alagöz, D. (2011). Covalent immobilization of catalase onto spacer-arm attached modified florisil: Characterization and application to batch and plug-flow type reactor systems. Enzyme Microb. Technol. 49(6–7), 547–554. DOI: 10.1016/j.enzmictec.2011.09.002.10.1016/j.enzmictec.2011.09.002Open DOISearch in Google Scholar

14. Trusek-Hołownia, A. & Noworyta, A. (2015). Efficient utilisation of hydrogel preparations with encapsulated enzymes – a case study on catalase and hydrogen peroxide degradation. Biotechnol. Rep. 6(0), 13–19. DOI: 10.1016/j.btre.2014.12.012.10.1016/j.btre.2014.12.012Search in Google Scholar

15. Ladero, M., Santos, A. & García-Ochoa, F. (2001). Diffusion and chemical reaction rates with nonuniform enzyme distribution: An experimental approach. Biotechnol. Bioeng. 72(4), 458–467. DOI: 10.1002/1097-0290(20000220)72:4<458::AIDBIT1007>3.0.CO;2-R.10.1002/1097-0290(20000220)72:4<458::AIDBIT1007>3.0.CO;2-Open DOISearch in Google Scholar

16. Ogura, Y. (1955). Catalase activity at high concentration of hydrogen peroxide. Archives of Biochemistry and Biophysics 57(2), 288–300. DOI: 10.1016/0003-9861(55)90291-5.10.1016/0003-9861(55)90291-5Open DOISearch in Google Scholar

17. Vasudevan, P.T. & Weiland, R.H. (1990). Deactivation of catalase by hydrogen peroxide. Biotechnol. Bioeng. 36(8), 783–789. DO I: 10.1002/bit.260360805.10.1002/bit.260360805Search in Google Scholar

18. Sherwood, T.G., Pigford, R.L. & Wilke, C.R. Mass Transfer, in: Clark B.J., Maisel J.W. (Eds.). New York, US A McGraw-Hill Inc.; 1975.Search in Google Scholar

19. Shen, L. & Chen, Z. (2007). Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62(14), 3748–3755. DOI: 10.1016/j.ces.2007.03.041.10.1016/j.ces.2007.03.041Open DOISearch in Google Scholar

20. Do, D.D. & Hossain, M.M. (1987). A new method to determine active enzyme distribution, effective diffusivity, rate constant for main reaction and rate constant for deactivation. Biotechnol. Bioeng. 29(5), 545–551. DO I: 10.1002/bit.260290502.10.1002/bit.260290502Search in Google Scholar

21. Martin, A.D. (2000). Interpretation of residence time distribution data. Chem. Eng. Sci. 55(23), 5907–5917. DOI: 10.1016/S0009-2509(00)00108-1.10.1016/S0009-2509(00)00108-1Open DOISearch in Google Scholar

22. Testu, A., Didierjean, S., Maillet, D., Moyne, C., Metzger, T. & Niass, T. (2007). Thermal dispersion for water or air flow through a bed of glass beads. Int. J. Heat Mass Transfer 50(7–8), 1469–1484. DOI: 10.1016/j.ijheatmasstransfer.2006.09.002.10.1016/j.ijheatmasstransfer.2006.09.002Open DOISearch in Google Scholar

23. Eissen, M., Zogg, A. & Hungerbühler, K. (2003). The runaway scenario in the assessment of thermal safety: simple experimental access by means of the catalytic decomposition of H2O2. J. Loss Prevent. Proc. 16(4), 289–296. DOI: 10.1016/S0950-4230(03)00022-6.10.1016/S0950-4230(03)00022-6Open DOISearch in Google Scholar

24. Dixon, A.G. & Cresswell, D.L. (1979). Theoretical prediction of effective heat transfer parameters in packed beds. AlChE J. 25(4), 663–676. DO I: 10.1002/aic.690250413.10.1002/aic.690250413Search in Google Scholar

25. Lin, S.H. (1991). Optimal feed temperature for an immobilized enzyme packed-bed reactor. J. Chem. Technol. Biotechnol. 50(1), 17–26. DOI: 10.1002/jctb.280500104.10.1002/jctb.2805001041366867Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering