Graphene oxide flake activation via divinylsulfone – a procedure for efficient β-galactosidase immobilization

Open access

Abstract

Flaky graphene oxide was activated with divinylsulfone followed by immobilization of the β-galactosidase enzyme. An active and stable preparation was obtained. β-galactosidase stability after immobilization was much higher than with the native enzyme. The half-life time of the immobilized enzyme was estimated as 165 hours, while for the native form, the estimate was only 5 hours. The developed procedure for the preparation of flaked graphene and its use in the chemical immobilization of enzymes can be used for any enzyme. A processing solution for continuous operation was proposed and verified using cow’s milk, with lactose as the hydrolysed substrate, as a dosing stream. Lactose, a milk sugar, was effectively hydrolysed. Product for allergy sufferers who cannot digest lactose has been obtained in this way.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Zhen Z. & Zhu H. (2017). Structure and Properties of Graphene Academic Press.

  • 2. Wang Y. Li Z. Wang J. Li J. & Lin Y. (2011). Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 29(5) 205–212. DOI: 10.1016/j.tibtech.2011.01.008.

  • 3. Talat M. & Srivastava O.N. (2016). Deployment of New Carbon Nanostructure: Graphene for Drug Delivery and Biomedical Applications Advances in Nanomaterials 383–395 DOI: 10.1007/978-81-322-2668-0_11

  • 4. Lin L.L. Chi M.C. Lan Y.J. Lin M.G. Juang T.Y. & Wang T.F. (2017). Facile immobilization of Bacillus licheniformis γ-glutamyltranspeptidase onto graphene oxide nanosheets and its application to the biocatalytic synthesis of γ-l-glutamyl peptides. Internat. J. Biol. Macromolec. 117 1326–1333. DOI: 10.1016/j.ijbiomac.2017.11.153.

  • 5. Zhang Y. Zhang J. Huang X. Zhou X. Wu H. & Guo S. (2012). Assembly of Graphene Oxide–Enzyme Conjugates through Hydrophobic Interaction. Small 8(1) 154–159. DOI: 10.1002/smll.201101695.

  • 6. Zhang J. Zhang F. Yang H. Huang X. Liu H. Zhang J. & Guo S. (2010). Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir 26(9) 6083–6085. DOI: 10.1021/la904014z.

  • 7. Bolibok P. Wisniewski M. Roszek K. & Terzyk A.P. (2017). Controlling enzymatic activity by immobilization on graphene oxide Sci. Nat. 104: 36. DOI: 10.1007/s00114-017-1459-3.

  • 8. Kishore D. Talat M. Srivastava O. & Kayastha A. (2012). Immobilization of β-Galactosidase onto Functionalized Graphene Nano-sheets Using Response Surface Methodology and Its Analytical Applications Plos One 7(7):e40708. DOI: 10.1371/journal.pone.0040708.

  • 9. Rodrigues R.R. Berenguer-Murcia A. & Fernandez-Lafuente R. (2011). Coupling Chemical Modification and Immobilization to Improve the Catalytic Performance of Enzymes Adv. Synth. Catal. 353(13) 2216–2238. DOI: 10.1002/adsc.201100163.

  • 10. dos Santos J.C.S. Rueda N. Barbosa O. Fernandez-Sanchez J.F. Medina-Castillo A.L. Ramon-Marquez T. Arias-Martos M.C. Millan-Linares M.C. Pedroche J. del Mar Yust M. Goncalves L.R.B. & Fernandez-Lafuente R. (2015). Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment. Application to chymotrypsin. RSC Adv. 5 20639–20649. DOI: 10.1039/C4RA16926C.

  • 11. Zucca P. & Sanjust E. (2014). Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms. Molecules 19 14139–14194. DOI: 10.3390/molecules190914139.

  • 12. Trusek-Holownia A. (2005). A catalytic membrane for hydrolysis reaction carried out in the two-liquid phase system - Membrane preparation and characterisation mathematical model of the proces. J. Membr. Sci. 259(1–2) 74–84. DOI: 10.1016/j.memsci.2005.03.047

  • 13. Miller C.N. (1959). Use of dinitrosalicyle acid reagent for determination of reducing sugar. Anal. Chem. 81 426–428.

  • 14. Braga A.R.C. Silva M.F. Oliveira J.V. Treichel H. & Kali l S.J. (2014). A new approach to evaluate immobilization of β-galactosidase on Eupergit® C: structural kinetic and thermal characterization. Quím. Nova 37 5 796–803. DOI: 10.5935/0100-4042.20140128.

  • 16. Niu D. Tian X. Mchunu N.P. Jia Ch. Singh S. Liu X. Prior B.A. & Lu F. (2017). Biochemical characterization of three Aspergillus niger β-galactosidases. Elect. J. Biotechnol. 27 37–43. DOI: 10.1016/j.ejbt.2017.03.001.

  • 17. Czyzewska K. & Trusek A. (2018) Encapsulated catalase from Serratia genus for H2O2 decomposition in food applications. Pol. J. Chem. Technol. 20(4). DOI: 10.2478/pjct-2018-0052.

  • 18. Fisher J. Guidini C.Z. Soares Santana L.N. de Resende M.M. Cardoso W.L. Ribeiro E.J. (2013). Optimization and modeling of lactose hydrolysis in a packed bed system using immobilized β-galactosidase from Aspergillus oryzae. J. Mol. Catal. B: Enzymatic 85–86 178–186. DOI: 10.1016/j.molcatb.2012.09.008.

  • 19. Barancewicz M. & Gryta M. (2012). Ethanol production in a bioreactor with an integrated membrane distillation module. Pol. J. Chem. Technol. 66(2) 85–90. DOI: 10.2478/s11696-011-0088-0.

  • 20. Trusek-Holownia A. (2008). Wastewater treatment in a microbial membrane bioreactor – a model of the proces. Desalination 221(1–3) 552–558. DOI: 10.1016/j.desal.2007.01.116.

  • 21. Chon K. Lee K. Kim I.S. & Jang A. (2016). Performance assessment of a submerged membrane bioreactor using a novel microbial consortium. Bioresour.Technol. 210 2–10. DOI: 10.1016/j.biortech.2016.01.013.

  • 22. Atra R. Vatai G. & Bekassy-Molnar E. (2005). Investigation of ultra- and nanofiltration for utilization of whey protein and lactose. J. Foof Eng. 67 (3) 325–332. DOI: 10.1016/j.foodeng.2004.04.035.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 148 148 18
PDF Downloads 117 117 16