Flocculation efficiency of hybrid polymers with trivalent metal cations


Acrylamide/acrylic acid copolymers (AAm/AA) have been synthesized by microemulsion polymerization in absence and presence of trivalent cations Al+3 and Fe+3. Starch materials were obtained by introducing cations Al+3 and Fe+3, in the form of aqueous solutions of sulphates(VI) (modif. starch/Me+3), into the oxidized starch (modif. starch). The flocculation performance of obtained polyacrylamide copolymers and the one based on the natural polymer was compared with the performance of the commercial AAm/AA flocculant (CF). All materials were characterized by capillary viscometry, FTIR and DSC methods. An aqueous suspension of talc was used for the flocculation studies. The flocculation effectiveness was evaluated on the basis of reduction of suspension extinction and the sludge volume. It was found that synthesized AAm/AA/Me+3 copolymers and modif. starch/Me+3 materials exhibit better flocculation properties for a model talc suspension than a commercially available floculant.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Liu, Y., Wang, S. & Hua, J. (2000). Synthesis of complex polymeric flocculant and its application in purifying water. J. App. Polym. Sci. 76, 2093-2097. DOI: 10.1002/(SICI)1097- 4628(20000628)76:14<2093.

  • 2. Chang, Q., Hao, X. & Duan, L. (2008). Synthesis of crosslinked starch-graft-polyacrylamide-co-sodium xanthate and its performance in wastewater treatment. J. Hazard. Mater., 159, 2-3, 548-553. DOI: 10.1016/j.jhazmat.2008.02.053.

  • 3. Churchman, G.J. (2002). Formation of complexes between bentonite and different cationic polyelectrolytes and their use as sorbents for non-ionic and anionic pollutants. Appl. Clay. Sci. 21, 3-4, 177-189. DOI: 10.1016/S0169-1317(01)00099-0.

  • 4. Qian, J.W., Xiang, X.J., Yang, W.Y., Wang, M., Zheng, B.Q. (2004). Flocculation performance of different polyacrylamide and the relation between optimal dose and critical concentration, Eur. Polym. J. 40, 8, 1699-1704. DOI: 10.1016/j.eurpolymj.2004.03.009.

  • 5. Seyed, P.M.P. & Peighambardoust, J. (2018). A review on acrylic based hydrogels and their applications in wastewater treatment. J. Environ. Manage. 217, 123-143. DOI: org/10.1016/j. jenvman.2018.03.076.

  • 6. Yang, W.Y., Qian, J.W. & Shen, Z.Q. (2004). A novel flocculant of Al(OH)3-polyacrylamide ionic hybrid. J. Colloid and Interface Sci. 273, 2, 400-405. DOI: 10.1016/j.jcis.2004.02.002.

  • 7. Drzycimska, A., Schmidt, B. & Spychaj, T. (2007). Modified acrylamide copolymers as flocculants for model aqueous suspensions. Polish J. Chem. Technol. 2, 9, 10-14. 10.2478/v10026-007-0015-x.

  • 8. Spychaj, T. & Schmidt, B. (2000). Polymeric systems based on poly(acrylic acid) and trivalent metal cations. Macromol. Symp. 152. 173-189.

  • 9. Wang, S., Li, E., Du, Z., Li, J. & Cheng, F. (2018). Preparation of a PASi-P(AM-ADB) hybrid flocculant and efficiently removal bio-refractory organics from coking wastewater. Envir. Chem. Lett. Online 05 September, 1-6. DOI: org/10.1007/s10311-018-0796-6.

  • 10. Campet, G., Rabardel, L., Portier, J., Dweik, H.S. & Subramanian, M.A. (1996). Synthesis and properties of po- lyacrylamide-bismuth halogenated hybrids. Active and Passive Elec. Comp. 19, 2, 99-104.DOI: dx.doi.org/10.1155/1996/64239.

  • 11. Yusoff, M.S. & Aziz, H.A. et al. (2018). Floc behavior and removal mechanisms of cross-linked Durio zibethinus seed starch as a natural flocculant for landfill leachate coagulation- flocculation treatment. Waste Manag.74, 362-372. DOI: org/10.1016/j.wasman.2018.01.016.

  • 12. El-Naggar, M.E. & Samhan, F.A. et al. (2018). Cationic starch: Safe and economic harvesting flocculant for microalgal biomass and inhibiting E. coli growth. Int. J. Biol. Macromol. 116, 1296-1303. DOI: org/10.1016/j.ijbiomac.2018.05.105.

  • 13. Mishra , S., Mukul, S., Sen, G. & Jha, U. (2011). Microwave assisted synthesis of polyacrylamide grafted starch (St-g--PAM) and its applicability as flocculant for water treatment. Int. J. Biol. Macromol. 48,(1), 106-111. DOI: org/10.1016/j. ijbiomac.2010.10.004.

  • 14. Mittal, H., Jindal, R., Kaith, B.S., Maity, A. & Ray, S.S. (2015). Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels. Carbohydr Polym. 115, 617-628. DOI: org/10.1016/j. carbpol.2014.09.026.

  • 15. Santander-Ortega, M.J., Stauner, T. & Ortega-Vinuesa, J.L. et al. (2010). Nanoparticles made from novel starch derivatives for transdermal drug delivery. J. Control Release. 141, 85-92. DOI: 10.1016/j.jconrel.2009.08.012

  • 16. Zhang, Y., Kou, R. & Lv, S. et al. (2015) Effect of Mesh Number of Wood Powder and Ratio of Raw Materials on Properties of Composite Material of Starch/Wood Powder. BioResources. 10, 5356-5368. DOI: 10.1515/revce-2015-0047.

  • 17. Ashogbon, A.O. & Akintayo, E.T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch-Stärke. 66, 41-57. DOI: 10.1002/star.201300106.

  • 18. De Oliveira, C.S., Andrade, M.M.P. & Colman, T.A.D. et al. (2014). Thermal, structural and rheological behaviour of native and modified waxy corn starch with hydrochloric acid at different temperatures. J. Therm. Anal. Calorim. 115, 13-18. DOI: 10.1007/s10973-013-3307-9.

  • 19. Shah, N., Mewada, R.K. & Mehta, T. (2016). Crosslinking of starch and its effect on viscosity behaviour. Rev. Chem. Engin. 32, 265-217.

  • 20. Parvathy, P.C. & Jyothi, A.N. (2012). Synthesis, characterization and swelling behaviour of superabsorbent polymers from cassava starch-graft-poly(acrylamide). Starch-Stärke 2012, 64, 207-218. DOI: 10.1002/star.201100077.

  • 21. Guo, Q., Wang, Y. & Fan, Y. et al. (2015). Synthesis and characterization of multi-active site grafting starch copolymer initiated by KMnO4 and HIO4/H2SO4 systems. Carbohydr Polym. 117, 247-254. DOI: org/10.1016/j.carbpol.2014.09.033.

  • 22. Al-Karawi, A.J.M. & Al-Daraji, R. (2010). Preparation and using of acrylamide grafted starch as polymer drug carrier. Carbohydr Polym. 79,3, 769-774. DOI: org/10.1016/j. carbpol.2009.10.003.

  • 23. Chang, Q., Hao, X. & Duan, L. (2008). Synthesis of crosslinked starch-graft-polyacrylamide-co-sodium xanthate and its performances in wastewater treatment. J. Hazard. Mater. 159, 548-553. DOI: 10.1016/j.hazmat.2008.02.053.

  • 24. Cui, S.W. (2005). Food Carbohydrates: Chemistry, Physical Properties, and Applications”, CRC Press, Boca Raton, FL, USA, p. 432.

  • 25. Fonseca, L.M. & Goncalves, J.R., et al. (2015). Oxidation of potato starch with different sodium hypochlorite concentrations and effect on biodegradable films. Food Sci. Technol. 60, 714-720. DOI: dx.doi.org/10.1016/j.lwt.2014.10.052.

  • 26. Tamsilian, Y. & Ramazani, A.S.A. et al. (2016). High molecular weight polyacrylamide nanoparticles prepared by inverse emulsion polymerization: reaction conditions-properties relationschips. Colloid. Polym. Sci. 294, 513-525. DOI: 10.1007/s00396-015-3803-5.

  • 27. Moharram, M.A., Rabie, S.M. & El-Gendy, H.M. (2002). Infrared spectra of γ-irradiated poly(acrylic acid) - polyacrylamide complex. J. Appl. Polym. Sci. 85, 1619-1623. DOI: 10.1002/app.10702.

  • 28. Zhang, Y.R., Wang, X.L., Zhao, G.M. & Wang, Y.Z. (2012). Preparation and properties of oxidized starch with high degree of oxidation. Carbohydr Polym. 87, 2554-2562. DOI: 10.1016/j.carbpol.2011.11.036.

  • 29. Leung, W.M., Axelson, D.E. & Syme, D. (1985). Determination of charge density of anionic polyacrylamide flocculants by NMR and DSC. Colloid & Polymer Sci. 263, 812-817.

  • 30. Lawal, O.S., Lechner, M.D. & Kulicke, W.M. (2008). Single and multi-step carboxymethylation of water yam (Dioscorea alata) starch: Synthesis and characterization. Int. J. Biol. Macromol. 42, 429-435. DOI: org/10.1016/j.ijbiomac.2008.02.006.

  • 31. Manelius, R. & Buleon, A., et al. (2000). The substitution pattern in cationised and oxidised potato starch granules. Carbohydrate Research. 329, 621-633.


Journal + Issues