Open Access

Flocculation efficiency of hybrid polymers with trivalent metal cations

   | Jan 11, 2019

Cite

1. Liu, Y., Wang, S. & Hua, J. (2000). Synthesis of complex polymeric flocculant and its application in purifying water. J. App. Polym. Sci. 76, 2093-2097. DOI: 10.1002/(SICI)1097- 4628(20000628)76:14<2093.10.1002/(SICI)1097-4628(20000628)76:14<2093Open DOISearch in Google Scholar

2. Chang, Q., Hao, X. & Duan, L. (2008). Synthesis of crosslinked starch-graft-polyacrylamide-co-sodium xanthate and its performance in wastewater treatment. J. Hazard. Mater., 159, 2-3, 548-553. DOI: 10.1016/j.jhazmat.2008.02.053.10.1016/j.jhazmat.2008.02.053Open DOISearch in Google Scholar

3. Churchman, G.J. (2002). Formation of complexes between bentonite and different cationic polyelectrolytes and their use as sorbents for non-ionic and anionic pollutants. Appl. Clay. Sci. 21, 3-4, 177-189. DOI: 10.1016/S0169-1317(01)00099-0.10.1016/S0169-1317(01)00099-0Open DOISearch in Google Scholar

4. Qian, J.W., Xiang, X.J., Yang, W.Y., Wang, M., Zheng, B.Q. (2004). Flocculation performance of different polyacrylamide and the relation between optimal dose and critical concentration, Eur. Polym. J. 40, 8, 1699-1704. DOI: 10.1016/j.eurpolymj.2004.03.009.10.1016/j.eurpolymj.2004.03.009Search in Google Scholar

5. Seyed, P.M.P. & Peighambardoust, J. (2018). A review on acrylic based hydrogels and their applications in wastewater treatment. J. Environ. Manage. 217, 123-143. DOI: org/10.1016/j. jenvman.2018.03.076.10.1016/j.jenvman.2018.03.076Open DOISearch in Google Scholar

6. Yang, W.Y., Qian, J.W. & Shen, Z.Q. (2004). A novel flocculant of Al(OH)3-polyacrylamide ionic hybrid. J. Colloid and Interface Sci. 273, 2, 400-405. DOI: 10.1016/j.jcis.2004.02.002.10.1016/j.jcis.2004.02.002Open DOISearch in Google Scholar

7. Drzycimska, A., Schmidt, B. & Spychaj, T. (2007). Modified acrylamide copolymers as flocculants for model aqueous suspensions. Polish J. Chem. Technol. 2, 9, 10-14. 10.2478/v10026-007-0015-x.10.2478/v10026-007-0015-xSearch in Google Scholar

8. Spychaj, T. & Schmidt, B. (2000). Polymeric systems based on poly(acrylic acid) and trivalent metal cations. Macromol. Symp. 152. 173-189.10.1002/1521-3900(200003)152:1<173::AID-MASY173>3.0.CO;2-2Search in Google Scholar

9. Wang, S., Li, E., Du, Z., Li, J. & Cheng, F. (2018). Preparation of a PASi-P(AM-ADB) hybrid flocculant and efficiently removal bio-refractory organics from coking wastewater. Envir. Chem. Lett. Online 05 September, 1-6. DOI: org/10.1007/s10311-018-0796-6.10.1007/s10311-018-0796-6Open DOISearch in Google Scholar

10. Campet, G., Rabardel, L., Portier, J., Dweik, H.S. & Subramanian, M.A. (1996). Synthesis and properties of po- lyacrylamide-bismuth halogenated hybrids. Active and Passive Elec. Comp. 19, 2, 99-104.DOI: dx.doi.org/10.1155/1996/64239.10.1155/1996/64239Search in Google Scholar

11. Yusoff, M.S. & Aziz, H.A. et al. (2018). Floc behavior and removal mechanisms of cross-linked Durio zibethinus seed starch as a natural flocculant for landfill leachate coagulation- flocculation treatment. Waste Manag.74, 362-372. DOI: org/10.1016/j.wasman.2018.01.016.10.1016/j.wasman.2018.01.01629370968Open DOISearch in Google Scholar

12. El-Naggar, M.E. & Samhan, F.A. et al. (2018). Cationic starch: Safe and economic harvesting flocculant for microalgal biomass and inhibiting E. coli growth. Int. J. Biol. Macromol. 116, 1296-1303. DOI: org/10.1016/j.ijbiomac.2018.05.105.10.1016/j.ijbiomac.2018.05.10529782981Open DOISearch in Google Scholar

13. Mishra , S., Mukul, S., Sen, G. & Jha, U. (2011). Microwave assisted synthesis of polyacrylamide grafted starch (St-g--PAM) and its applicability as flocculant for water treatment. Int. J. Biol. Macromol. 48,(1), 106-111. DOI: org/10.1016/j. ijbiomac.2010.10.004.10.1016/j.ijbiomac.2010.10.00420951725Open DOISearch in Google Scholar

14. Mittal, H., Jindal, R., Kaith, B.S., Maity, A. & Ray, S.S. (2015). Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels. Carbohydr Polym. 115, 617-628. DOI: org/10.1016/j. carbpol.2014.09.026.10.1016/j.carbpol.2014.09.02625439940Open DOISearch in Google Scholar

15. Santander-Ortega, M.J., Stauner, T. & Ortega-Vinuesa, J.L. et al. (2010). Nanoparticles made from novel starch derivatives for transdermal drug delivery. J. Control Release. 141, 85-92. DOI: 10.1016/j.jconrel.2009.08.01210.1016/j.jconrel.2009.08.01219699771Open DOISearch in Google Scholar

16. Zhang, Y., Kou, R. & Lv, S. et al. (2015) Effect of Mesh Number of Wood Powder and Ratio of Raw Materials on Properties of Composite Material of Starch/Wood Powder. BioResources. 10, 5356-5368. DOI: 10.1515/revce-2015-0047.10.1515/revce-2015-0047Search in Google Scholar

17. Ashogbon, A.O. & Akintayo, E.T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch-Stärke. 66, 41-57. DOI: 10.1002/star.201300106.10.1002/star.201300106Open DOISearch in Google Scholar

18. De Oliveira, C.S., Andrade, M.M.P. & Colman, T.A.D. et al. (2014). Thermal, structural and rheological behaviour of native and modified waxy corn starch with hydrochloric acid at different temperatures. J. Therm. Anal. Calorim. 115, 13-18. DOI: 10.1007/s10973-013-3307-9.10.1007/s10973-013-3307-9Open DOISearch in Google Scholar

19. Shah, N., Mewada, R.K. & Mehta, T. (2016). Crosslinking of starch and its effect on viscosity behaviour. Rev. Chem. Engin. 32, 265-217.10.1515/revce-2015-0047Search in Google Scholar

20. Parvathy, P.C. & Jyothi, A.N. (2012). Synthesis, characterization and swelling behaviour of superabsorbent polymers from cassava starch-graft-poly(acrylamide). Starch-Stärke 2012, 64, 207-218. DOI: 10.1002/star.201100077.10.1002/star.201100077Open DOISearch in Google Scholar

21. Guo, Q., Wang, Y. & Fan, Y. et al. (2015). Synthesis and characterization of multi-active site grafting starch copolymer initiated by KMnO4 and HIO4/H2SO4 systems. Carbohydr Polym. 117, 247-254. DOI: org/10.1016/j.carbpol.2014.09.033.10.1016/j.carbpol.2014.09.033Open DOISearch in Google Scholar

22. Al-Karawi, A.J.M. & Al-Daraji, R. (2010). Preparation and using of acrylamide grafted starch as polymer drug carrier. Carbohydr Polym. 79,3, 769-774. DOI: org/10.1016/j. carbpol.2009.10.003.10.1016/j.carbpol.2009.10.003Open DOISearch in Google Scholar

23. Chang, Q., Hao, X. & Duan, L. (2008). Synthesis of crosslinked starch-graft-polyacrylamide-co-sodium xanthate and its performances in wastewater treatment. J. Hazard. Mater. 159, 548-553. DOI: 10.1016/j.hazmat.2008.02.053.10.1016/j.hazmat.2008.02.053Open DOISearch in Google Scholar

24. Cui, S.W. (2005). Food Carbohydrates: Chemistry, Physical Properties, and Applications”, CRC Press, Boca Raton, FL, USA, p. 432.Search in Google Scholar

25. Fonseca, L.M. & Goncalves, J.R., et al. (2015). Oxidation of potato starch with different sodium hypochlorite concentrations and effect on biodegradable films. Food Sci. Technol. 60, 714-720. DOI: dx.doi.org/10.1016/j.lwt.2014.10.052.10.1016/j.lwt.2014.10.052Open DOISearch in Google Scholar

26. Tamsilian, Y. & Ramazani, A.S.A. et al. (2016). High molecular weight polyacrylamide nanoparticles prepared by inverse emulsion polymerization: reaction conditions-properties relationschips. Colloid. Polym. Sci. 294, 513-525. DOI: 10.1007/s00396-015-3803-5.10.1007/s00396-015-3803-5Open DOISearch in Google Scholar

27. Moharram, M.A., Rabie, S.M. & El-Gendy, H.M. (2002). Infrared spectra of γ-irradiated poly(acrylic acid) - polyacrylamide complex. J. Appl. Polym. Sci. 85, 1619-1623. DOI: 10.1002/app.10702.10.1002/app.10702Open DOISearch in Google Scholar

28. Zhang, Y.R., Wang, X.L., Zhao, G.M. & Wang, Y.Z. (2012). Preparation and properties of oxidized starch with high degree of oxidation. Carbohydr Polym. 87, 2554-2562. DOI: 10.1016/j.carbpol.2011.11.036.10.1016/j.carbpol.2011.11.036Open DOISearch in Google Scholar

29. Leung, W.M., Axelson, D.E. & Syme, D. (1985). Determination of charge density of anionic polyacrylamide flocculants by NMR and DSC. Colloid & Polymer Sci. 263, 812-817.10.1007/BF01412958Search in Google Scholar

30. Lawal, O.S., Lechner, M.D. & Kulicke, W.M. (2008). Single and multi-step carboxymethylation of water yam (Dioscorea alata) starch: Synthesis and characterization. Int. J. Biol. Macromol. 42, 429-435. DOI: org/10.1016/j.ijbiomac.2008.02.006.10.1016/j.ijbiomac.2008.02.006Open DOISearch in Google Scholar

31. Manelius, R. & Buleon, A., et al. (2000). The substitution pattern in cationised and oxidised potato starch granules. Carbohydrate Research. 329, 621-633.10.1016/S0008-6215(00)00206-8Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering