Preparation, Characterization, and Application of N,S-codoped TiO2/Montmorillonite Nanocomposite for the Photocatalytic Degradation of Ciprofl oxacin: Optimization by Response Surface Methodology

Mohamadreza Massoudinejad 1 , Ali Paseban 1 , Ahmadreza Yazdanbakhsh 1  und Mohammad Reza Nabid 2
  • 1 Shahid Beheshti University of Medical Sciences, Department of Environmental Health Engineering, School of Health, P.CODE: P.C. 1983535511,, Tehran, Iran
  • 2 Shahid Beheshti University, Department of Chemistry, G.C., 1983963113,, Tehran, Iran


An N,S-codoped TiO2/Montmorillonite nanocomposite, as a photocatalyst, was synthesized in the sol-gel method and used for the degradation of ciprofloxacin (Cip) in an aqueous solution. N,S-codoped TiO2/Montmorillonte was characterized by powder X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), and X-ray fluorescence (XRF) analyzes. A central composite design (CCD) was used to optimize the variables for the removal of Cip by the N,S-codoped TiO2/Montmorillonite. A maximum decomposition of 92% of Cip was achieved in optimum conditions. The band gap value for the nanocomposite was 2.77 eV. Moreover, with the use of nanocomposite in the four consecutive runs, the final removal efficiency was 66%. The results show that the N,S-codoped TiO2/ Montmorillonite under simulated sunlight irradiation can be applied as an effective photocatalyst for the removal of Cip from aqueous solutions.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • 1. Klavarioti, M., Mantzavinos, D. & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35(2), 402-417. DOI: 10.1016/j.envint.2008.07.009.

  • 2. Parsa, J.B., Panah, T.M. & Chianeh, F.N. (2016). Removal of ciprofloxacin from aqueous solution by a continuous flow electro-coagulation process. Korean J. Chem. Eng. 33(3), 893-901. DOI: 10.1007/s11814-015-0196-6.

  • 3. Hassani, A., Khataee, A., Karaca, S., Karaca, C. & Gholami, P. (2016). Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrason. Sonochem. 35, 1-12. DOI: 10.1016/j.ultsonch.2016.09.027.

  • 4. Hassani, A., Khataee, A. & Karaca, S. (2015). Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling. J. Mol. Catal. A Chem. 409, 149-161. DOI: 10.1016/j.molcata.2015.08.020.

  • 5. Gharbani, P., Mehrizad, A. & Jafarpour, I. (2015). Adsorption of penicillin by decaffeinated tea waste. Polish J. Chem. Technol. 17(3), 95-9. DOI: 10.1515/pjct-2015-0056.

  • 6. Hassani, A., Khataee, A., Karaca, S. & Fathinia, M. (2017). Degradation of mixture of three pharmaceuticals by photocatalytic ozonation in the presence of TiO2/montmorillonite nanocomposite: Simultaneous determination and intermediates identification. J. Environ. Chem. Eng. 5(2), 1964-76. DOI: 10.1016/j.jece.2017.03.032.

  • 7. Hassani, A., Khataee, A., Fathinia, M. & Karaca, S. (2018). Photocatalytic ozonation of ciprofloxacin from aqueous solution using TiO2/MMT nanocomposite: Nonlinear modeling and optimization of the process via artificial neural network integrated genetic algorithm. Process Saf. Environ. Prot. 116, 365-76. DOI: 10.1016/j.psep.2018.03.013.

  • 8. Kümmerer, K. (2009). Antibiotics in the aquatic environment - A review - Part I. Chemosphere 75(4), 417-434. DOI: 10.1016/j.chemosphere.2008.11.086.

  • 9. Ghasemi, Z., Younesi, H. & Zinatizadeh, A.A. (2016). Preparation, characterization and photocatalytic application of TiO2/ Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: Optimization of process parameters by response surface methodology. Chemosphere 159, 552-564. DOI: 10.1016/j.chemosphere.2016.06.058.

  • 10. Daghrir, R., Drogui, P., Delegan, N. & Khakani, M.A.E. (2013). Electrochemical degradation of chlortetracycline using N-doped Ti/TiO2 photoanode under sunlight irradiations. Water Res. 47(17), 6801-10. DOI: 10.1016/j.watres.2013.09.011.

  • 11. Wojcieszak, D., Mazur, M., Kaczmarek, D., Morgiel, J., Poniedziałek, A. & Domaradzki, J., et al. (2015). Influence of the structural and surface properties on photocatalytic activity of TiO2:Nd thin films. Polish J. Chem. Technol. 17(2), 103-11. DOI: 10.1515/pjct-2015-0047.

  • 12. Dulian, P., Buras, M. & Witold, Ż. (2016). Modyfication of photocatalytic properties of titanium dioxide by mechanochemical method. Polish J. Chem. Technol. (110), 68-71.

  • 13. Rengifo-Herrera, J.A., Pierzchala, K., Sienkiewicz, A., Forro, L., Kiwi, J., Moser, J.E. & Pulgarin, C. (2010). Synthesis, characterization, and photocatalytic activities of nanoparticulate N, S-codoped TiO2 having different surface-to-volume ratios. J. Phys. Chem. C. 114(6), 2717-2723. DOI: 10.1021/jp910486f.

  • 14. Li, Y. & Kim, S.J. (2005). Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability. J. Phys. Chem. B., 109(25), 12309-12315. DOI: 10.1021/jp0512917.

  • 15. Zhang, G., Ding, X., Hu, Y., Huang, B., Zhang, X. & Qin, X., et al. (2008). Photocatalytic Degradation of 4BS Dye by N, S-Codoped TiO2 Pillared Montmorillonite Photocatalysts under Visible-Light Irradiation. J. Phys. Chem. C., 112, 17994-17997. DOI: 10.1016/j.jpcs.2007.10.090.

  • 16. Eslami, A., Amini, MM., Yazdanbakhsh, AR., Mohseni- Bandpei, A., Safari, AA. & Asadi, A. (2016). N,S co-doped TiO2 nanoparticles, and nanosheets in simulated solar light for photocatalytic degradation of non-steroidal anti-inflammatory drugs in water: a comparative study. J. Chem. Technol. Biotechnol. 91(10), 2693-2704. DOI: 10.1002/jctb.4877.

  • 17. Xiang, Q., Yu, J. & Jaroniec, M. (2011). Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 13(11), 4853-61. DOI: 10.1039/ C0CP01459A.

  • 18. Wu, Q., Li, Z., Hong, H., Yin, K. & Tie, L. (2010). Adsorption and intercalation of ciprofloxacin on montmorillonite. Appl. Clay Sci. 50(2), 204-211. DOI:10.1016/j.clay.2010.08.001

  • 19. Yuan, L., Huang, D., Guo, W., Yang, Q. & Yu, J. (2011). TiO2/montmorillonite nanocomposite for removal of organic pollutant. Appl. Clay. Sci. 53(2), 272-278. DOI: 10.1016/j. clay.2011.03.013.

  • 20. Carrasquillo, A.J., Bruland, G.L., Mackay, A.A. & Vasudevan, D. (2008). Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: Influence of compound structure. Environ. Sci. Technol. 42(20), 7634-7642. DOI: 10.1021/es801277y.

  • 21. Sun, H., Peng, T., Liu, B. & Xian, H. (2015). Effects of montmorillonite on phase transition and size of TiO2 nanoparticles in TiO2/montmorillonite nanocomposites. Appl. Clay Sci. 114, 440-446. DOI: 10.1016/j.clay.2015.06.026.

  • 22. Kameshima, Y., Tamura, Y. Nakajima, A. & Okada, K. (2009). Preparation and properties of TiO2/montmorillonite composites. Appl. Clay Sci. 45(1-2), 20-3. DOI: 10.1016/j. clay.2009.03.005.

  • 23. An, T., Chen, J., Li, G., Ding, X., Sheng, G. & Fu, J., et al. (2008). Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts. Degradation of decabromodiphenyl ether (BDE 209). Catal. Today 139(1-2), 69-76. DOI: 10.1016/j.cattod.2008.08.024.

  • 24. Chen, D., Du, G., Zhu, Q. & Zhu, F. (2013). Synthesis and characterization of TiO2 pillared montmorillonites: Application for methylene blue degradation. J. Colloid Interface Sci. 409, 151-7. DOI: 10.1016/j.jcis.2013.07.049.

  • 25. Shaban, Y.A. & Khan, S.U.M. (2009). Carbon modified (CM)-n-TiO2 thin films for efficient water splitting to H2 and O2 under xenon lamp light and natural sunlight illuminations. J. Solid State Electrochem. 13(7), 1025-36. DOI: 10.1007/ s10008-009-0823-4.

  • 26. Zhang, G., Ding, X, He, F., Yu, X., Zhou, J. & Hu, Y., et al. (2008). Preparation and photocatalytic properties of TiO2- -montmorillonite doped with nitrogen and sulfur. J. Phys. Chem. Solids. 69(5-6), 1102-1106. DOI: 10.1016/j.jpcs.2007.10.090.

  • 27. Sohrabi, S. & Akhlaghian, F. (2016). Modeling and optimization of phenol degradation over copper-doped titanium dioxide photocatalyst using response surface methodology. Process Saf. Environ. Prot. 99, 120-128. DOI: 10.1016/j. psep.2015.10.016.

  • 28. Karimi, L. (2017). Combination of mesoporous titanium dioxide with MoS2 nanosheets for high photocatalytic activity. Polish J. Chem. Technol. 19(2), 56-60. DOI: 10.1515/ pjct-2017-0028.

  • 29. Fatimah, I., Wang, S. & Wulandari, D. (2011). ZnO/ montmorillonite for photocatalytic and photochemical degradation of methylene blue. Appl. Clay Sci. 53(4), 553-560. DOI: 10.1016/j.clay.2011.05.001.

  • 30. Kattiparambil Manoharan, R. & Sankaran, S. (2017). Photocatalytic degradation of organic pollutant aldicarb by non-metal-doped nanotitania: synthesis and characterization. Environ. Sci. Pollut. Res. DOI: 10.1007/s11356-017-0350-2.

  • 31. Liu, J., Li, X., Zuo, S. & Yu, Y. (2007). Preparation and photocatalytic activity of silver and TiO2 nanoparticles/ montmorillonite composites. Appl. Clay Sci. 37(3), 275-280. DOI: 10.1016/j.clay.2007.01.008.

  • 32. Han, C., Pelaez, M., Likodimos, V., Kontos, AG, Falaras, P. & O’Shea, K., et al. (2011). Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal. B. Environ. 107(1-2), 77-87. DOI: 10.1016/j.apcatb.2011.06.039.

  • 33. Salarian, A.A., Hami, Z., Mirzaie, N., Mohseni, SM., Asadi, A. & Bahrami, H, et al. (2016). N-doped TiO2 nanosheets for photocatalytic degradation and mineralization of diazinon under simulated solar irradiation: Optimization and modeling using a response surface methodology. J. Mol. Liq. 220, 183-191. DOI: 10.1016/j.molliq.2016.04.060.

  • 34. Rasouli, F., Aber, S., Salari, D. & Khataee, A.R. (2014). Optimized removal of Reactive Navy Blue SP-BR by organo-montmorillonite based adsorbents through central composite design. Appl. Clay Sci. 87, 228-234. DOI: 10.1016/j. clay.2013.11.010.

  • 35. Khataee, A.R., Zarei, M. & Asl, S.K. (2010). Photocatalytic treatment of a dye solution using immobilized TiO2 nanoparticles combined with photoelectro-Fenton process: Optimization of operational parameters. J. Electroanal. Chem. 648, 143-150. DOI: 10.1016/j.jelechem.2010.07.017.

  • 36. Moussavi, G., Alahabadi, A., Yaghmaeian, K. & Eskandari, M. (2013). Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chem. Eng. J. 217, 119-28. DOI: 10.1016/j.cej.2012.11.069.

  • 37. Carmosini, N. & Lee, L.S. (2009). Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials. Chemosphere 77, 813-820. DOI: 10.1016/j.chemosphere. 2009.08.003.

  • 38. Gu, C. & Karthikeyan, K.G. (2005). Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environ. Sci. Technol. 39(23), 9166-9173. DOI: 10.1021/ es051109f.

  • 39. Abdullah, A.H., Moey, H.J.M. & Yusof, N.A. (2012). Response surface methodology analysis of the photocatalytic removal of Methylene Blue using bismuth vanadate prepared via polyol route. J. Environ. Sci. (China) 24(9), 1694-701. DOI: 10.1016/S1001-0742(11)60966-2.

  • 40. An, T., Yang, H., Li, G., Song, W., Cooper W.J. & Nie, X. (2010). Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Appl. Catal. B Environ. 94(3-4), 288-94. DOI: 10.1016/j.apcatb.2009.12.002.

  • 41. Massoudinejad, M., Ghaderpoori, M., Shahsavani, A., Jafari, A., Kamarehie, B., Ghaderpoury, A. & Amini, M.M. (2018). Ethylenediamine-functionalized cubic ZIF-8 for arsenic adsorption from aqueous solution: Modeling, isotherms, kinetics and thermodynamics. J. Mol. Liq. 255, 263-8. DOI: 10.1016/j. molliq.2018.01.163.

  • 42. Gad-Allah, T.A., Ali, M.E.M.M. & Badawy, M.I. (2011). Photocatalytic oxidation of ciprofloxacin under simulated sunlight. J. Hazard. Mater. 186(1), 751-755. DOI: 10.1016/j. jhazmat.2010.11.066.

  • 43. Kuriechen, S.K., Murugesan, S., Raj, S.P. & Maruthamuthu, P. (2011). Visible light assisted photocatalytic mineralization of Reactive Red 180 using colloidal TiO2 and oxone. Chem. Eng. J. 174(2-3), 530-538. DOI: 10.1016/j.cej.2011.09.024.

  • 44. Modirshahla, N., Hassani, A., Behnajady, M.A. & Rahbarfam, R. (2011). Effect of operational parameters on decolorization of Acid Yellow 23 from wastewater by UV irradiation using ZnO and ZnO/SnO2 photocatalysts. Desalination 271(1-3), 187-192. DOI: 10.1016/j.desal.2010.12.027.

  • 45. Akbari-Adergani, B., Saghi, M.H., Eslami, A., Mohseni- -Bandpei, A. & Rabbani, M. (2017). Removal of Dibutyl Phthalate from Aqueous Environments Using a Nanophotocatalytic Fe, Ag-ZnO/VIS-LED System: Modeling and Optimization. Environ. Technol. 0, 1-31. DOI: 10.1080/09593330.2017.1332693.

  • 46. El-Sheikh, S.M., Zhang, G., El-Hosainy, H.M., Ismail, A.A., O’Shea, K.E., Falaras, P., Kontos, A.G. & Dionysiou, D.D. (2014). High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation. J. Hazard. Mater. 280, 723-33. DOI: 10.1016/j.jhazmat.2014.08.038.


Zeitschrift + Hefte