Open Access

Preparation, Characterization, and Application of N,S-codoped TiO2/Montmorillonite Nanocomposite for the Photocatalytic Degradation of Ciprofl oxacin: Optimization by Response Surface Methodology


Cite

1. Klavarioti, M., Mantzavinos, D. & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ. Int. 35(2), 402-417. DOI: 10.1016/j.envint.2008.07.009.10.1016/j.envint.2008.07.00918760478Open DOISearch in Google Scholar

2. Parsa, J.B., Panah, T.M. & Chianeh, F.N. (2016). Removal of ciprofloxacin from aqueous solution by a continuous flow electro-coagulation process. Korean J. Chem. Eng. 33(3), 893-901. DOI: 10.1007/s11814-015-0196-6.10.1007/s11814-015-0196-6Open DOISearch in Google Scholar

3. Hassani, A., Khataee, A., Karaca, S., Karaca, C. & Gholami, P. (2016). Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrason. Sonochem. 35, 1-12. DOI: 10.1016/j.ultsonch.2016.09.027.10.1016/j.ultsonch.2016.09.02727720593Open DOISearch in Google Scholar

4. Hassani, A., Khataee, A. & Karaca, S. (2015). Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: Effect of operation parameters and artificial neural network modeling. J. Mol. Catal. A Chem. 409, 149-161. DOI: 10.1016/j.molcata.2015.08.020.10.1016/j.molcata.2015.08.020Open DOISearch in Google Scholar

5. Gharbani, P., Mehrizad, A. & Jafarpour, I. (2015). Adsorption of penicillin by decaffeinated tea waste. Polish J. Chem. Technol. 17(3), 95-9. DOI: 10.1515/pjct-2015-0056.10.1515/pjct-2015-0056Open DOISearch in Google Scholar

6. Hassani, A., Khataee, A., Karaca, S. & Fathinia, M. (2017). Degradation of mixture of three pharmaceuticals by photocatalytic ozonation in the presence of TiO2/montmorillonite nanocomposite: Simultaneous determination and intermediates identification. J. Environ. Chem. Eng. 5(2), 1964-76. DOI: 10.1016/j.jece.2017.03.032.10.1016/j.jece.2017.03.032Open DOISearch in Google Scholar

7. Hassani, A., Khataee, A., Fathinia, M. & Karaca, S. (2018). Photocatalytic ozonation of ciprofloxacin from aqueous solution using TiO2/MMT nanocomposite: Nonlinear modeling and optimization of the process via artificial neural network integrated genetic algorithm. Process Saf. Environ. Prot. 116, 365-76. DOI: 10.1016/j.psep.2018.03.013.10.1016/j.psep.2018.03.013Open DOISearch in Google Scholar

8. Kümmerer, K. (2009). Antibiotics in the aquatic environment - A review - Part I. Chemosphere 75(4), 417-434. DOI: 10.1016/j.chemosphere.2008.11.086.10.1016/j.chemosphere.2008.11.08619185900Search in Google Scholar

9. Ghasemi, Z., Younesi, H. & Zinatizadeh, A.A. (2016). Preparation, characterization and photocatalytic application of TiO2/ Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: Optimization of process parameters by response surface methodology. Chemosphere 159, 552-564. DOI: 10.1016/j.chemosphere.2016.06.058.10.1016/j.chemosphere.2016.06.05827341159Open DOISearch in Google Scholar

10. Daghrir, R., Drogui, P., Delegan, N. & Khakani, M.A.E. (2013). Electrochemical degradation of chlortetracycline using N-doped Ti/TiO2 photoanode under sunlight irradiations. Water Res. 47(17), 6801-10. DOI: 10.1016/j.watres.2013.09.011.10.1016/j.watres.2013.09.01124075724Search in Google Scholar

11. Wojcieszak, D., Mazur, M., Kaczmarek, D., Morgiel, J., Poniedziałek, A. & Domaradzki, J., et al. (2015). Influence of the structural and surface properties on photocatalytic activity of TiO2:Nd thin films. Polish J. Chem. Technol. 17(2), 103-11. DOI: 10.1515/pjct-2015-0047.10.1515/pjct-2015-0047Open DOISearch in Google Scholar

12. Dulian, P., Buras, M. & Witold, Ż. (2016). Modyfication of photocatalytic properties of titanium dioxide by mechanochemical method. Polish J. Chem. Technol. (110), 68-71.10.1515/pjct-2016-0061Search in Google Scholar

13. Rengifo-Herrera, J.A., Pierzchala, K., Sienkiewicz, A., Forro, L., Kiwi, J., Moser, J.E. & Pulgarin, C. (2010). Synthesis, characterization, and photocatalytic activities of nanoparticulate N, S-codoped TiO2 having different surface-to-volume ratios. J. Phys. Chem. C. 114(6), 2717-2723. DOI: 10.1021/jp910486f.10.1021/jp910486fOpen DOISearch in Google Scholar

14. Li, Y. & Kim, S.J. (2005). Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability. J. Phys. Chem. B., 109(25), 12309-12315. DOI: 10.1021/jp0512917.10.1021/jp051291716852519Open DOISearch in Google Scholar

15. Zhang, G., Ding, X., Hu, Y., Huang, B., Zhang, X. & Qin, X., et al. (2008). Photocatalytic Degradation of 4BS Dye by N, S-Codoped TiO2 Pillared Montmorillonite Photocatalysts under Visible-Light Irradiation. J. Phys. Chem. C., 112, 17994-17997. DOI: 10.1016/j.jpcs.2007.10.090.10.1016/j.jpcs.2007.10.090Open DOISearch in Google Scholar

16. Eslami, A., Amini, MM., Yazdanbakhsh, AR., Mohseni- Bandpei, A., Safari, AA. & Asadi, A. (2016). N,S co-doped TiO2 nanoparticles, and nanosheets in simulated solar light for photocatalytic degradation of non-steroidal anti-inflammatory drugs in water: a comparative study. J. Chem. Technol. Biotechnol. 91(10), 2693-2704. DOI: 10.1002/jctb.4877.10.1002/jctb.4877Search in Google Scholar

17. Xiang, Q., Yu, J. & Jaroniec, M. (2011). Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 13(11), 4853-61. DOI: 10.1039/ C0CP01459A.10.1039/C0CP01459Open DOISearch in Google Scholar

18. Wu, Q., Li, Z., Hong, H., Yin, K. & Tie, L. (2010). Adsorption and intercalation of ciprofloxacin on montmorillonite. Appl. Clay Sci. 50(2), 204-211. DOI:10.1016/j.clay.2010.08.00110.1016/j.clay.2010.08.001Open DOISearch in Google Scholar

19. Yuan, L., Huang, D., Guo, W., Yang, Q. & Yu, J. (2011). TiO2/montmorillonite nanocomposite for removal of organic pollutant. Appl. Clay. Sci. 53(2), 272-278. DOI: 10.1016/j. clay.2011.03.013.10.1016/j.clay.2011.03.013Open DOISearch in Google Scholar

20. Carrasquillo, A.J., Bruland, G.L., Mackay, A.A. & Vasudevan, D. (2008). Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: Influence of compound structure. Environ. Sci. Technol. 42(20), 7634-7642. DOI: 10.1021/es801277y.10.1021/es801277y18983086Open DOISearch in Google Scholar

21. Sun, H., Peng, T., Liu, B. & Xian, H. (2015). Effects of montmorillonite on phase transition and size of TiO2 nanoparticles in TiO2/montmorillonite nanocomposites. Appl. Clay Sci. 114, 440-446. DOI: 10.1016/j.clay.2015.06.026.10.1016/j.clay.2015.06.026Open DOISearch in Google Scholar

22. Kameshima, Y., Tamura, Y. Nakajima, A. & Okada, K. (2009). Preparation and properties of TiO2/montmorillonite composites. Appl. Clay Sci. 45(1-2), 20-3. DOI: 10.1016/j. clay.2009.03.005.10.1016/j.clay.2009.03.005Open DOISearch in Google Scholar

23. An, T., Chen, J., Li, G., Ding, X., Sheng, G. & Fu, J., et al. (2008). Characterization and the photocatalytic activity of TiO2 immobilized hydrophobic montmorillonite photocatalysts. Degradation of decabromodiphenyl ether (BDE 209). Catal. Today 139(1-2), 69-76. DOI: 10.1016/j.cattod.2008.08.024.10.1016/j.cattod.2008.08.024Open DOISearch in Google Scholar

24. Chen, D., Du, G., Zhu, Q. & Zhu, F. (2013). Synthesis and characterization of TiO2 pillared montmorillonites: Application for methylene blue degradation. J. Colloid Interface Sci. 409, 151-7. DOI: 10.1016/j.jcis.2013.07.049.10.1016/j.jcis.2013.07.04923957927Open DOISearch in Google Scholar

25. Shaban, Y.A. & Khan, S.U.M. (2009). Carbon modified (CM)-n-TiO2 thin films for efficient water splitting to H2 and O2 under xenon lamp light and natural sunlight illuminations. J. Solid State Electrochem. 13(7), 1025-36. DOI: 10.1007/ s10008-009-0823-4.10.1007/s10008-009-0823-4Open DOISearch in Google Scholar

26. Zhang, G., Ding, X, He, F., Yu, X., Zhou, J. & Hu, Y., et al. (2008). Preparation and photocatalytic properties of TiO2- -montmorillonite doped with nitrogen and sulfur. J. Phys. Chem. Solids. 69(5-6), 1102-1106. DOI: 10.1016/j.jpcs.2007.10.090.10.1016/j.jpcs.2007.10.090Open DOISearch in Google Scholar

27. Sohrabi, S. & Akhlaghian, F. (2016). Modeling and optimization of phenol degradation over copper-doped titanium dioxide photocatalyst using response surface methodology. Process Saf. Environ. Prot. 99, 120-128. DOI: 10.1016/j. psep.2015.10.016.10.1016/j.psep.2015.10.016Open DOISearch in Google Scholar

28. Karimi, L. (2017). Combination of mesoporous titanium dioxide with MoS2 nanosheets for high photocatalytic activity. Polish J. Chem. Technol. 19(2), 56-60. DOI: 10.1515/ pjct-2017-0028.10.1515/pjct-2017-0028Open DOISearch in Google Scholar

29. Fatimah, I., Wang, S. & Wulandari, D. (2011). ZnO/ montmorillonite for photocatalytic and photochemical degradation of methylene blue. Appl. Clay Sci. 53(4), 553-560. DOI: 10.1016/j.clay.2011.05.001.10.1016/j.clay.2011.05.001Open DOISearch in Google Scholar

30. Kattiparambil Manoharan, R. & Sankaran, S. (2017). Photocatalytic degradation of organic pollutant aldicarb by non-metal-doped nanotitania: synthesis and characterization. Environ. Sci. Pollut. Res. DOI: 10.1007/s11356-017-0350-2.10.1007/s11356-017-0350-229063399Open DOISearch in Google Scholar

31. Liu, J., Li, X., Zuo, S. & Yu, Y. (2007). Preparation and photocatalytic activity of silver and TiO2 nanoparticles/ montmorillonite composites. Appl. Clay Sci. 37(3), 275-280. DOI: 10.1016/j.clay.2007.01.008.10.1016/j.clay.2007.01.008Open DOISearch in Google Scholar

32. Han, C., Pelaez, M., Likodimos, V., Kontos, AG, Falaras, P. & O’Shea, K., et al. (2011). Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl. Catal. B. Environ. 107(1-2), 77-87. DOI: 10.1016/j.apcatb.2011.06.039.10.1016/j.apcatb.2011.06.039Open DOISearch in Google Scholar

33. Salarian, A.A., Hami, Z., Mirzaie, N., Mohseni, SM., Asadi, A. & Bahrami, H, et al. (2016). N-doped TiO2 nanosheets for photocatalytic degradation and mineralization of diazinon under simulated solar irradiation: Optimization and modeling using a response surface methodology. J. Mol. Liq. 220, 183-191. DOI: 10.1016/j.molliq.2016.04.060.10.1016/j.molliq.2016.04.060Open DOISearch in Google Scholar

34. Rasouli, F., Aber, S., Salari, D. & Khataee, A.R. (2014). Optimized removal of Reactive Navy Blue SP-BR by organo-montmorillonite based adsorbents through central composite design. Appl. Clay Sci. 87, 228-234. DOI: 10.1016/j. clay.2013.11.010.10.1016/j.clay.2013.11.010Open DOISearch in Google Scholar

35. Khataee, A.R., Zarei, M. & Asl, S.K. (2010). Photocatalytic treatment of a dye solution using immobilized TiO2 nanoparticles combined with photoelectro-Fenton process: Optimization of operational parameters. J. Electroanal. Chem. 648, 143-150. DOI: 10.1016/j.jelechem.2010.07.017.10.1016/j.jelechem.2010.07.017Open DOISearch in Google Scholar

36. Moussavi, G., Alahabadi, A., Yaghmaeian, K. & Eskandari, M. (2013). Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chem. Eng. J. 217, 119-28. DOI: 10.1016/j.cej.2012.11.069.10.1016/j.cej.2012.11.069Open DOISearch in Google Scholar

37. Carmosini, N. & Lee, L.S. (2009). Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials. Chemosphere 77, 813-820. DOI: 10.1016/j.chemosphere. 2009.08.003.10.1016/j.chemosphere.2009.08.003Open DOISearch in Google Scholar

38. Gu, C. & Karthikeyan, K.G. (2005). Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environ. Sci. Technol. 39(23), 9166-9173. DOI: 10.1021/ es051109f.10.1021/es051109fOpen DOISearch in Google Scholar

39. Abdullah, A.H., Moey, H.J.M. & Yusof, N.A. (2012). Response surface methodology analysis of the photocatalytic removal of Methylene Blue using bismuth vanadate prepared via polyol route. J. Environ. Sci. (China) 24(9), 1694-701. DOI: 10.1016/S1001-0742(11)60966-2.10.1016/S1001-0742(11)60966-2Open DOISearch in Google Scholar

40. An, T., Yang, H., Li, G., Song, W., Cooper W.J. & Nie, X. (2010). Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Appl. Catal. B Environ. 94(3-4), 288-94. DOI: 10.1016/j.apcatb.2009.12.002.10.1016/j.apcatb.2009.12.002Open DOISearch in Google Scholar

41. Massoudinejad, M., Ghaderpoori, M., Shahsavani, A., Jafari, A., Kamarehie, B., Ghaderpoury, A. & Amini, M.M. (2018). Ethylenediamine-functionalized cubic ZIF-8 for arsenic adsorption from aqueous solution: Modeling, isotherms, kinetics and thermodynamics. J. Mol. Liq. 255, 263-8. DOI: 10.1016/j. molliq.2018.01.163.Search in Google Scholar

42. Gad-Allah, T.A., Ali, M.E.M.M. & Badawy, M.I. (2011). Photocatalytic oxidation of ciprofloxacin under simulated sunlight. J. Hazard. Mater. 186(1), 751-755. DOI: 10.1016/j. jhazmat.2010.11.066.10.1016/j.jhazmat.2010.11.06621193266Open DOISearch in Google Scholar

43. Kuriechen, S.K., Murugesan, S., Raj, S.P. & Maruthamuthu, P. (2011). Visible light assisted photocatalytic mineralization of Reactive Red 180 using colloidal TiO2 and oxone. Chem. Eng. J. 174(2-3), 530-538. DOI: 10.1016/j.cej.2011.09.024.10.1016/j.cej.2011.09.024Open DOISearch in Google Scholar

44. Modirshahla, N., Hassani, A., Behnajady, M.A. & Rahbarfam, R. (2011). Effect of operational parameters on decolorization of Acid Yellow 23 from wastewater by UV irradiation using ZnO and ZnO/SnO2 photocatalysts. Desalination 271(1-3), 187-192. DOI: 10.1016/j.desal.2010.12.027.10.1016/j.desal.2010.12.027Open DOISearch in Google Scholar

45. Akbari-Adergani, B., Saghi, M.H., Eslami, A., Mohseni- -Bandpei, A. & Rabbani, M. (2017). Removal of Dibutyl Phthalate from Aqueous Environments Using a Nanophotocatalytic Fe, Ag-ZnO/VIS-LED System: Modeling and Optimization. Environ. Technol. 0, 1-31. DOI: 10.1080/09593330.2017.1332693.10.1080/09593330.2017.133269328514937Search in Google Scholar

46. El-Sheikh, S.M., Zhang, G., El-Hosainy, H.M., Ismail, A.A., O’Shea, K.E., Falaras, P., Kontos, A.G. & Dionysiou, D.D. (2014). High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO2 photocatalyst for the removal of microcystin-LR under visible light irradiation. J. Hazard. Mater. 280, 723-33. DOI: 10.1016/j.jhazmat.2014.08.038.10.1016/j.jhazmat.2014.08.03825238189Open DOISearch in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering