Effect of the two-stage thermal disintegration and anaerobic digestion of sewage sludge on the COD fractions

Open access


The research presents the changes in chemical oxygen demand (COD) fractions during the two-stage thermal disintegration and anaerobic digestion (AD) of sewage sludge in municipal wastewater treatment plant (WWTP). Four COD fractions have been separated taking into account the solubility of substrates and their susceptibility to biodegradation: inert soluble organic matter SI, readily biodegradable substrate SS, slowly biodegradable substrates XS and inert particulate organic material XI. The results showed that readily biodegradable substrates SS (46.8% of total COD) and slowly biodegradable substrates XS (36.1% of total COD) were dominant in the raw sludge effluents. In sewage effluents after two-stage thermal disintegration, the percentage of SS fraction increased to 90% of total COD and percentage of XS fraction decreased to 8% of total COD. After AD, percentage of SS fraction in total COD decreased to 64%, whereas the percentage of other fractions in effluents increased.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Climent M. Ferrerb I. del Mar Baezac M. Artola A. Vázquezb F. & Font X. (2007). Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chem. Eng. J. 133 335–342. DOI: 10.1016/j.cej.2007.02.020.

  • 2. Zhang H. (2010). Sludge treatment to increase biogas production. Trita-LWR Degree Project 10–20 Stockholm Sweden.

  • 3. Foladori P. Andreottola G. & Ziglio G. (2010). Sludge reduction technologies in wastewater treatment plants. IWA Publishing London.

  • 4. Bougrier C. Carrere H. & Delgenes J. (2005). Solubilisation of waste-activated sludge by ultrasonic treatment. Chem. Eng. J. 106 163–169. DOI: 10.1016/j.cej.2004.11.013.

  • 5. Zhang P. Zhang G. & Wang W. (2007). Ultrasonic treatment of biological sludge: Floc disintegration cell lysis and inactivation. Bioresource Technol. 98 207–210. DOI: 10.1016/j.biortech.2005.12.002.

  • 6. Zhang G. Yang J. Liu H. & Zhang J. (2009). Sludge ozonation: Disintegration supernatant changes and mechanisms. Bioresource Technol. 100 1505–1509. DOI: 10.1016/j.biortech.2008.08.041.

  • 7. Neyens E. & Baeyens J. (2003). A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater. B98 51–67. DOI: 10.1016/S0304-3894(02)00320-5.

  • 8. Pilli S. Yan S. Tyagi R.D. & Surampalli R.Y. (2015). Thermal pretreatment of sewage sludge to enhance anaerobic digestion: A review. Crit. Rev. Environ. Sci. Technol. 45(6) 669–702. DOI: 10.1080/10643389.2013.876527.

  • 9. Ferrer I. Ponsá S. Vázquez F. & Font X. (2008). Increasing biogas production by thermal (70°C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 42 186–192. DOI: 10.1016/j.bej.2008.06.020.

  • 10. Appels L. Houtmeyers S. Degrève J. Impe J.V. & Dewil R. (2013). Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion. Bioresource Technol. 128 598–603. DOI: 10.1016/j.biortech.2012.11.007.

  • 11. Tyagi V. & Lo S. (2013). Microwave irradiation: A sustainable way for sludge treatment and resource recovery. Renew. Sust. Energ. Rev. 18 288–305. DOI: 10.1016/j.rser.2012.10.032.

  • 12. Li H. Li C. Liu W. & Zou S. (2012). Optimized alkaline pretreatment of sludge before anaerobic digestion. Bioresource Technol. 123 189–194. DOI: 10.1016/j.biortech.2012.08.017.

  • 13. Zhang Y. Zhang P. Zhang G. Ma W. Wu H. & Ma B. (2012). Sewage sludge disintegration by combined treatment of alkaline + high pressure homogenization. Bioresource Technol. 123 514–519. DOI: 10.1016/j.biortech.2012.07.078.

  • 14. Eskicioglu C. Kennedy K. & Ronald D.R. (2006). Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment. Water Res. 40 3725–3736. DOI: 10.1016/j.watres.2006.08.017.

  • 15. Cui R. & Jahng D. (2006). Enhanced methane production from anaerobic digestion of disintegrated and deproteinized excess sludge. Biotechnol. Lett. 28 531–538. DOI: 10.1007/s10529-006-0012-9.

  • 16. Carlson M. Lagerkvist A. & Morgan-Sagastume F. (2012). The effect of substrate pre-treatment on anaerobic digestion system: A review. Waste Management. 32 1634–1650. DOI: 10.1016/j.wasman.2012.04.016.

  • 17. Martínez E. Rosas J. Morán A. & Gómez X. (2015). Effect of ultrasound pretreatment on sludge digestion and dewatering characteristics: Application of particle size analysis. Water 7(11) 6483–6495. DOI: 10.3390/w7116483.

  • 18. Wu Q.L. Guo W.Q. Zheng H.S. Luo H.Ch. Feng X.Ch. Yin R.L. & Ren N.Q. (2016). Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. Bioresource Technol. 216 653–660. DOI: 10.1016/j.biortech.2016.06.006.

  • 19. Huan L. Yiying J. Bux Mahar R. Zhiyu W. & Yongfeng N. (2009). Effects of ultrasonic disintegration on sludge microbial activity and dewaterability. J. Hazard. Mater. 161 1421–1426. DOI: 10.1016/j.jhazmat.2008.04.113.

  • 20. Xiao B.Y. & Liu J.X. (2009). Effects of various pretreatments on biohydrogen production from sewage sludge. Chin. Sci. Bull. 54 2038–2044. DOI: 10.1007/s11434-009-0100-z.

  • 21. Jung Y. Ko H. Jung B. & Sung N. (2011). Application of ultrasonic system for enhanced sewage sludge disintegration: A comparative study of Single- and dual-frequency. KSCE J. Civ. Eng. 15 793–797. DOI: 10.1007/s12205-011-0832-6.

  • 22. Negral L. Marañón E. Castrillón L. & Fernández-Nava Y. (2015). Differences in soluble COD and ammonium when applying ultrasound to primary secondary and mixed sludge. Water Sci. Technol. 71 1398–406. DOI: 10.2166/wst.2015.113.

  • 23. Jin L. Zhang G. & Zheng X. (2015). Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance. J. Environ. Sci. 28 22–28. DOI: 10.1016/j.jes.2014.06.040.

  • 24. Penaud V. Delgenès J.P. & Moletta R. (1999). Thermochemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme Microb. Tech. 25 258–263. DOI: 10.1016/S0141-0229(99)00037-X.

  • 25. Sperling M. (2007). Basic principles of wastewater treatment. IWA Publishing Vol. 2 London.

  • 26. Zawilski M. & Brzezińska A. (2009). Variability of COD and TKN fractions of combined wastewater. Pol. J. Environ. Stud. 18 501–505.

  • 27. Henze M. Gujer W. Mino T. & van Loosdrecht M. (2007). Activated sludge models ASM1 ASM2 ASM2d ASM3. IWA Tasc Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment London.

  • 28. Dulekgurgen E. Doğruel S. Karahan Ö. & Orhon D. (2006). Size distribution of wastewater COD fractions as an index for biodegradability. Water Res. 40 273–282. DOI: 10.1016/j.watres.2005.10.032.

  • 29. Hayet C. Saida B.A. Touhami Y. & Hedi S. (2016). Study of biodegradability for municipal and industrial Tunisian wastewater by respirometric technique and batch reactor test. Sustain. Environ. Res. 26 55–62. DOI: 10.1016/j.serj.2015.11.001.

  • 30. Junoh H. Yip CH. & Kumaran P. (2016). Effect on Ca(OH)2 pretreatment to enhance biogas production of organic food waste International Conference on Advances in Renewable Energy and Technologies (ICARET 2016) IOP Publishing IOP Conf. Series: Earth and Environmental Science Vol. 32. Putrajaya Malaysia. DOI: 10.1088/1755-1315/32/1/012013.

  • 31. Sadecka Z. Jędrczak A. & Płuciennik-Koropczuk E. (2013). COD Fractions in Sewage Flowing into Polish Sewage Treatment Plants. Chem. Biochem. Eng. Q. 27(2) 185–195.

  • 32. Wentzel M.C. Mbewe A. Lakay M.T. & Ekama G.A. (1999). Batch test for characterisation of the carbonaceous materials in municipal wastewaters. Water SA. 25(3) 327–335.

  • 33. Henze M. Gujer W. Mino T. & von Loosdrecht M. (2000). Activated sludge models ASM1 ASM2 ASM2d and ASM3. IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment; IWA Scientific and Technical Reports London.

  • 34. Wintle B. (2008). The use of activated sludge model No. 3 to model an activated sludge unit at an industrial wastewater treatment facility. Master of Science. Environmental Engineering Oklahoma State University Stillwater Oklahoma.

  • 35. Specialized Committees ATV-DVWK. ATV-DVWK – A131P. (2000). Dimensioning of biological activated treatment plant (in Polish). Seidel-Przywecki. Warsaw.

  • 36. Appels L. Degrèvea J. Bruggen B. Impe J. & Dewil R. (2010). Influence of low temperature thermal pre-treatment on sludge solubilisation heavy metal release and anaerobic digestion Bioresource Technol. 101(15) 5743–5748. DOI: 10.1016/j.biortech.2010.02.068.

  • 37. Farno E. Baudez J.C. Parthasarathy R. & Esshtiaghi N. (2016). Impact of thermal treatment on the rheological properties and composition of waste activates sludge: COD solubilisation as a footprint of rheological changes. Chem. Eng. J. 295 39–48. DOI: 10.1016/j.cej.2016.03.022.

  • 38. Myszograj S. (2013). Effects of the solubilisation of the COD of municipal waste in thermal disintegration. Arch. Environ. Protect. 39(2) 57–67. DOI: 10.2478/aep-2013-0014.

  • 39. Aboulfoth A.M. El Gohary E.H. & El Monayeri O.D. (2015). Effect of thermal pretreatment on the solubilization of organic matters in a mixture of primary and waste activated sludge. J. Urban Environ. Eng. 9(1) 82–88. DOI: 10.4090/juee.2015.v9n1.082088.

  • 40. Henze M. Gujer W. Mino T. Matsuo T. Wentzel M.C. Marais G.v.R. & Van Loosdrecht M.C. (1999). Activated sludge model No2D ASM2D. Water Sci. Technol. 39(1) 165–182. DOI: 10.1016/S0273-1223(98)00829-4.

  • 41. Kumi P.J. Henley A. Shana A. Wilson W. & Esteves S.R. (2016). Volatile fatty acids platform from thermally hydrolysed secondary sewage sludge enhanced through recovered micronutrients from digested sludge. Water Res. 100 267–276. DOI: 10.1016/j.watres.2016.05.030.

  • 42. Mikosz J. (2015). Determination of permissible industrial pollution load at a municipal wastewater treatment plant. Int. J. Environ. Sci. Technol. 12 827–836. DOI: 10.1007/s13762-013-0472-0.

  • 43. Penn M.R. Pauer J.J. & Mihelcic J.R. (2009). Biochemical oxygen demand. Environ. Ecol. Chem. 2 278–297.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0,975
5-year IMPACT FACTOR: 0,878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 292 165 3
PDF Downloads 146 88 3