Open Access

Effect of the two-stage thermal disintegration and anaerobic digestion of sewage sludge on the COD fractions


Cite

1. Climent, M., Ferrerb, I., del Mar Baezac, M., Artola, A., Vázquezb, F. & Font, X. (2007). Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chem. Eng. J. 133, 335–342. DOI: 10.1016/j.cej.2007.02.020.10.1016/j.cej.2007.02.020Open DOISearch in Google Scholar

2. Zhang, H. (2010). Sludge treatment to increase biogas production. Trita-LWR Degree Project 10–20, Stockholm, Sweden.Search in Google Scholar

3. Foladori, P., Andreottola, G. & Ziglio, G. (2010). Sludge reduction technologies in wastewater treatment plants. IWA Publishing, London.10.2166/9781780401706Search in Google Scholar

4. Bougrier, C., Carrere, H. & Delgenes, J. (2005). Solubilisation of waste-activated sludge by ultrasonic treatment. Chem. Eng. J. 106, 163–169. DOI: 10.1016/j.cej.2004.11.013.10.1016/j.cej.2004.11.013Open DOISearch in Google Scholar

5. Zhang, P., Zhang, G. & Wang, W. (2007). Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation. Bioresource Technol. 98, 207–210. DOI: 10.1016/j.biortech.2005.12.002.10.1016/j.biortech.2005.12.002Open DOISearch in Google Scholar

6. Zhang, G., Yang, J., Liu, H. & Zhang, J. (2009). Sludge ozonation: Disintegration, supernatant changes and mechanisms. Bioresource Technol. 100, 1505–1509. DOI: 10.1016/j.biortech.2008.08.041.10.1016/j.biortech.2008.08.041Open DOISearch in Google Scholar

7. Neyens, E. & Baeyens, J. (2003). A review of thermal sludge pre-treatment processes to improve dewaterability. J. Hazard. Mater. B98, 51–67. DOI: 10.1016/S0304-3894(02)00320-5.10.1016/S0304-3894(02)00320-5Open DOISearch in Google Scholar

8. Pilli, S., Yan, S., Tyagi, R.D. & Surampalli, R.Y. (2015). Thermal pretreatment of sewage sludge to enhance anaerobic digestion: A review. Crit. Rev. Environ. Sci. Technol. 45(6), 669–702. DOI: 10.1080/10643389.2013.876527.10.1080/10643389.2013.876527Search in Google Scholar

9. Ferrer, I., Ponsá, S., Vázquez, F. & Font, X. (2008). Increasing biogas production by thermal (70°C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 42, 186–192. DOI: 10.1016/j.bej.2008.06.020.10.1016/j.bej.2008.06.020Open DOISearch in Google Scholar

10. Appels, L., Houtmeyers, S., Degrève, J., Impe, J.V. & Dewil, R. (2013). Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion. Bioresource Technol. 128, 598–603. DOI: 10.1016/j.biortech.2012.11.007.10.1016/j.biortech.2012.11.00723211486Search in Google Scholar

11. Tyagi, V. & Lo, S. (2013). Microwave irradiation: A sustainable way for sludge treatment and resource recovery. Renew. Sust. Energ. Rev. 18, 288–305. DOI: 10.1016/j.rser.2012.10.032.10.1016/j.rser.2012.10.032Open DOISearch in Google Scholar

12. Li, H., Li, C., Liu, W. & Zou, S. (2012). Optimized alkaline pretreatment of sludge before anaerobic digestion. Bioresource Technol. 123, 189–194. DOI: 10.1016/j.biortech.2012.08.017.10.1016/j.biortech.2012.08.01722940318Open DOISearch in Google Scholar

13. Zhang, Y., Zhang, P. Zhang, G. Ma, W. Wu, H. & Ma, B. (2012). Sewage sludge disintegration by combined treatment of alkaline + high pressure homogenization. Bioresource Technol. 123, 514–519. DOI: 10.1016/j.biortech.2012.07.078.10.1016/j.biortech.2012.07.07822940362Open DOISearch in Google Scholar

14. Eskicioglu, C., Kennedy, K. & Ronald, D.R. (2006). Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment. Water Res. 40, 3725–3736. DOI: 10.1016/j.watres.2006.08.017.10.1016/j.watres.2006.08.01717028065Open DOISearch in Google Scholar

15. Cui, R. & Jahng, D. (2006). Enhanced methane production from anaerobic digestion of disintegrated and deproteinized excess sludge. Biotechnol. Lett. 28, 531–538. DOI: 10.1007/s10529-006-0012-9.10.1007/s10529-006-0012-916614889Open DOISearch in Google Scholar

16. Carlson, M., Lagerkvist, A. & Morgan-Sagastume, F. (2012). The effect of substrate pre-treatment on anaerobic digestion system: A review. Waste Management. 32, 1634–1650. DOI: 10.1016/j.wasman.2012.04.016.10.1016/j.wasman.2012.04.01622633466Open DOISearch in Google Scholar

17. Martínez, E., Rosas, J., Morán, A. & Gómez, X. (2015). Effect of ultrasound pretreatment on sludge digestion and dewatering characteristics: Application of particle size analysis. Water 7(11), 6483–6495. DOI: 10.3390/w7116483.10.3390/w7116483Open DOISearch in Google Scholar

18. Wu, Q.L., Guo, W.Q., Zheng, H.S., Luo, H.Ch., Feng, X.Ch., Yin, R.L. & Ren, N.Q. (2016). Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. Bioresource Technol. 216, 653–660. DOI: 10.1016/j.biortech.2016.06.006.10.1016/j.biortech.2016.06.00627289056Open DOISearch in Google Scholar

19. Huan, L., Yiying, J., Bux Mahar, R., Zhiyu, W. & Yongfeng, N. (2009). Effects of ultrasonic disintegration on sludge microbial activity and dewaterability. J. Hazard. Mater. 161, 1421–1426. DOI: 10.1016/j.jhazmat.2008.04.113.10.1016/j.jhazmat.2008.04.11318547717Open DOISearch in Google Scholar

20. Xiao, B.Y. & Liu, J.X. (2009). Effects of various pretreatments on biohydrogen production from sewage sludge. Chin. Sci. Bull. 54, 2038–2044. DOI: 10.1007/s11434-009-0100-z.10.1007/s11434-009-0100-zOpen DOISearch in Google Scholar

21. Jung, Y., Ko, H., Jung, B. & Sung, N. (2011). Application of ultrasonic system for enhanced sewage sludge disintegration: A comparative study of Single- and dual-frequency. KSCE J. Civ. Eng. 15, 793–797. DOI: 10.1007/s12205-011-0832-6.10.1007/s12205-011-0832-6Open DOISearch in Google Scholar

22. Negral, L., Marañón, E., Castrillón, L. & Fernández-Nava, Y. (2015). Differences in soluble COD and ammonium when applying ultrasound to primary, secondary and mixed sludge. Water Sci. Technol. 71, 1398–406. DOI: 10.2166/wst.2015.113.10.2166/wst.2015.113Open DOISearch in Google Scholar

23. Jin, L., Zhang, G. & Zheng, X. (2015). Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance. J. Environ. Sci. 28, 22–28. DOI: 10.1016/j.jes.2014.06.040.10.1016/j.jes.2014.06.040Open DOISearch in Google Scholar

24. Penaud, V., Delgenès, J.P. & Moletta, R. (1999). Thermochemical pretreatment of a microbial biomass: influence of sodium hydroxide addition on solubilization and anaerobic biodegradability. Enzyme Microb. Tech. 25, 258–263. DOI: 10.1016/S0141-0229(99)00037-X.10.1016/S0141-0229(99)00037-XOpen DOISearch in Google Scholar

25. Sperling, M. (2007). Basic principles of wastewater treatment. IWA Publishing, Vol. 2, London.Search in Google Scholar

26. Zawilski, M. & Brzezińska, A. (2009). Variability of COD and TKN fractions of combined wastewater. Pol. J. Environ. Stud. 18, 501–505.Search in Google Scholar

27. Henze, M., Gujer, W., Mino, T. & van Loosdrecht, M. (2007). Activated sludge models ASM1, ASM2, ASM2d, ASM3. IWA Tasc Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, London.Search in Google Scholar

28. Dulekgurgen, E., Doğruel, S., Karahan, Ö. & Orhon, D. (2006). Size distribution of wastewater COD fractions as an index for biodegradability. Water Res. 40, 273–282. DOI: 10.1016/j.watres.2005.10.032.10.1016/j.watres.2005.10.03216376405Open DOISearch in Google Scholar

29. Hayet, C., Saida, B.A., Touhami, Y. & Hedi, S. (2016). Study of biodegradability for municipal and industrial Tunisian wastewater by respirometric technique and batch reactor test. Sustain. Environ. Res. 26, 55–62. DOI: 10.1016/j.serj.2015.11.001.10.1016/j.serj.2015.11.001Open DOISearch in Google Scholar

30. Junoh, H., Yip, CH. & Kumaran, P. (2016). Effect on Ca(OH)2 pretreatment to enhance biogas production of organic food waste, International Conference on Advances in Renewable Energy and Technologies (ICARET 2016), IOP Publishing, IOP Conf. Series: Earth and Environmental Science, Vol. 32. Putrajaya, Malaysia. DOI: 10.1088/1755-1315/32/1/012013.10.1088/1755-1315/32/1/012013Open DOISearch in Google Scholar

31. Sadecka, Z., Jędrczak, A. & Płuciennik-Koropczuk, E. (2013). COD Fractions in Sewage Flowing into Polish Sewage Treatment Plants. Chem. Biochem. Eng. Q. 27(2), 185–195.Search in Google Scholar

32. Wentzel, M.C., Mbewe, A., Lakay, M.T. & Ekama, G.A. (1999). Batch test for characterisation of the carbonaceous materials in municipal wastewaters. Water SA. 25(3), 327–335.Search in Google Scholar

33. Henze, M., Gujer, W., Mino, T. & von Loosdrecht, M. (2000). Activated sludge models ASM1, ASM2, ASM2d and ASM3. IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment; IWA Scientific and Technical Reports, London.Search in Google Scholar

34. Wintle, B. (2008). The use of activated sludge model No. 3 to model an activated sludge unit at an industrial wastewater treatment facility. Master of Science. Environmental Engineering Oklahoma State University Stillwater, Oklahoma.Search in Google Scholar

35. Specialized Committees ATV-DVWK. ATV-DVWK – A131P. (2000). Dimensioning of biological activated treatment plant (in Polish). Seidel-Przywecki. Warsaw.Search in Google Scholar

36. Appels, L., Degrèvea, J., Bruggen, B., Impe, J. & Dewil R. (2010). Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion, Bioresource Technol. 101(15), 5743–5748. DOI: 10.1016/j.biortech.2010.02.068.10.1016/j.biortech.2010.02.06820335023Open DOISearch in Google Scholar

37. Farno, E., Baudez, J.C., Parthasarathy, R. & Esshtiaghi, N. (2016). Impact of thermal treatment on the rheological properties and composition of waste activates sludge: COD solubilisation as a footprint of rheological changes. Chem. Eng. J. 295, 39–48. DOI: 10.1016/j.cej.2016.03.022.10.1016/j.cej.2016.03.022Open DOISearch in Google Scholar

38. Myszograj, S. (2013). Effects of the solubilisation of the COD of municipal waste in thermal disintegration. Arch. Environ. Protect. 39(2), 57–67. DOI: 10.2478/aep-2013-0014.10.2478/aep-2013-0014Open DOISearch in Google Scholar

39. Aboulfoth, A.M., El Gohary, E.H. & El Monayeri, O.D. (2015). Effect of thermal pretreatment on the solubilization of organic matters in a mixture of primary and waste activated sludge. J. Urban Environ. Eng. 9(1), 82–88. DOI: 10.4090/juee.2015.v9n1.082088.10.4090/juee.2015.v9n1.082088Open DOISearch in Google Scholar

40. Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C., Marais, G.v.R. & Van Loosdrecht, M.C. (1999). Activated sludge model No2D, ASM2D. Water Sci. Technol. 39(1), 165–182. DOI: 10.1016/S0273-1223(98)00829-4.10.1016/S0273-1223(98)00829-4Open DOISearch in Google Scholar

41. Kumi, P.J., Henley, A., Shana, A., Wilson, W. & Esteves, S.R. (2016). Volatile fatty acids platform from thermally hydrolysed secondary sewage sludge enhanced through recovered micronutrients from digested sludge. Water Res. 100, 267–276. DOI: 10.1016/j.watres.2016.05.030.10.1016/j.watres.2016.05.03027206055Open DOISearch in Google Scholar

42. Mikosz, J. (2015). Determination of permissible industrial pollution load at a municipal wastewater treatment plant. Int. J. Environ. Sci. Technol. 12, 827–836. DOI: 10.1007/s13762-013-0472-0.10.1007/s13762-013-0472-0Open DOISearch in Google Scholar

43. Penn, M.R., Pauer, J.J. & Mihelcic, J.R. (2009). Biochemical oxygen demand. Environ. Ecol. Chem. 2, 278–297.Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering