Adsorptive molecularly imprinted composite membranes for chiral separation of phenylalanine

Open access


Two types of composite imprinted membranes, i.e., composite membrane comprised of D-Phe imprinted beads and D-Phe imprinted membrane or DCM and composite membrane comprised of L-Phe imprinted beads and L-Phe imprinted membranes or LCM, were synthesized by phase inversion technique after a uniform dispersion of beads within the polymeric solutions using simple physico-mechanical process. The assemblies of the prepared DCM, LCM and control membranes were employed in ultrafiltration for chiral separation of D, L-Phenylalanine racemate solution. DCM and LCM showed an improved adsorption capacity (0.334 mg g-1 and 0.365 mg g-1 respectively), and adsorption selectivity (2.72 and 2.98 respectively). However, the percent rejection of the template and counter enantiomer were lower than that of control membranes. Compared to control membrane, the DCM and LCM showed inverse permselectivity. These composite membranes having better adsorption and separation ability for Phenylalanine racemate solution will be suitable in the future for various other applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Takeda K. & Kobayashi T. (2006). Hybrid molecularly imprinted membranes for targeted bisphenol derivatives. J. Membr. Sci. 275(1) 61-9. DOI: 10.1016/j.memsci.2005.09.004.

  • 2. Sharma P.S. Iskierko Z. Pietrzyk-Le A. D’Souza F. & Kutner W. (2015). Bioinspired intelligent molecularly imprinted polymers for chemosensing: A mini review. Electrochem. Commun. 50 81-87. DOI:10.1016/j.elecom.2014.11.019.

  • 3. Lv Y.K. Zhang J.Q. He Y.D. Zhang J. & Sun H.W. (2014). Adsorption-controlled preparation of molecularly imprinted hybrid composites for selective extraction of tetracycline residues from honey and milk. New. J. Chem. 38 802-808. DOI: 10.1039/C3NJ00962A.

  • 4. Park J.K. & Seo J.I. (2002). Characteristics of phenylalanine imprinted membrane prepared by the wet phase inversion method. Korean J. Chem. Eng. 19(6) 940-8. DOI: 10.1007/ BF02707215.

  • 5. Park J.K. & Kim S.J. (2004). Separation of phenylalanine by ultrafiltration using D-Phe imprinted polyacrylonitrile-poly (acrylic acid)-poly (acryl amide) terpolymer membrane. Korean j. Chem. Eng. 21(5) 994-8. DOI: 10.1007/BF02705583.

  • 6. Scorrano S. Mergola L. Bello M.P.D. Lazzoi M.R. Vasapollo G. & Sole R.D. (2015). Molecularly imprinted composite membranes for selective detection of 2-deoxyadenosine in urine samples. Int. J. Mol. Sci. 16 13746-13759. DOI: 10.3390/ijms160613746.

  • 7. Park J.K. Kim S.J. & Lee J.W. (2003). Adsorption selectivity of phenylalanine imprinted polymer prepared by the wet phase inversion method. Korean J. Chem. Eng. 20(6) 1066-1072. DOI: 10.1007/BF02706937.

  • 8. Tasselli F. Donato L. & Drioli E. (2008). Evaluation of molecularly imprinted membranes based on different acrylic copolymers. J. Membr. Sci. 320(1) 167-72. DOI: 10.1016/j. memsci.2008.03.071.

  • 9. Wu Y. Liu X. Meng M. Li P. Yan M. Wei X. Li H. Yan Y. & Li C. (2015). Bio-inspired adhesion: Fabrication of molecularly imprinted nanocomposite membranes by developing a hybrid organic-inorganic nanoparticles composite structure. J. Membr. Sci. 490 169-178. DOI: 10.1016/j.memsci.2015.04.023.

  • 10. Zhou Y. Zhou T. Jin H. Jing T. Song B. Zhou Y. Mei S. & Lee Y.I. (2015). Rapid and selective extraction of multiple macrolide antibiotics in foodstuff samples based on magnetic molecularly imprinted polymers. Talanta 137 1-10. DOI: 10.1016/j.talanta.2015.01.008.

  • 11. Algieri C. Drioli E. Guzzo L. & Donato L. (2014). Biomimetic sensors based on molecularly imprinted membranes. Sensors 14 13863-13912. DOI: 10.3390/s140813863.

  • 12. Ulbrich t M. (2004). Membrane separations using molecularly imprinted polymers. J. Chromatogr. B. 804(1) 113-25. DOI: 10.1016/j.jchromb.2004.02.007.

  • 13. Jantarat C. Tangthong N. Songkro S. Martin G.P. & Suedee R. (2008). S-Propranolol imprinted polymer nanoparticle-on-microsphere composite porous cellulose membrane for the enantioselectively controlled delivery of racemic propranolol. Int. J. Pharm. 349(1) 212-25. DOI: 10.1016/j. ijpharm.2007.07.030.

  • 14. Hilal N. Kochkodan V. Al-Khatib L. & Busca G. (2002). Characterization of molecularly imprinted composite membranes using an atomic force microscope. Surf. Inter. Anal. 33(8) 672-5. DOI: 10.1002/sia.1434.

  • 15. Wang P. Hu W. & Su W. (2008). Molecularly imprinted poly (methacrylamide-co-methacrylic acid) composite membranes for recognition of curcumin. Anal. Chim. Acta 615(1) 54-62. DOI: 10.1016/j.aca.2008.03.040.

  • 16. Laroche M. Pukall R. & Ulber R. (2003). Gewinnung und Charakterisierung einer L-Serindehydratase aus dem marinen Bakterium Paracoccus seriniphilus zum Aufbau bioanalytischer Systeme. Chemie Ingenieur Technik 75(1-2) 146-9. DOI: 10.1002/cite.200390012.

  • 17. Son S.H . & Jegal J. (2007). Chiral separation of D Lserine racemate using a molecularly imprinted polymer composite membrane. J. Appl. Poly. Sci. 104(3) 1866-72. DOI: 10.1002/app.25845.

  • 18. Yoshimatsu K. Ye L. Lindberg J. & Chronakis I.S. (2008). Selective molecular adsorption using electrospun nanofi ber affinity membranes. Biosens. Bioelectron. 23(7) 1208-15. DOI: 10.1016/j.bios.2007.12.002.

  • 19. Fakirov S. Bhattacharyya D. & Shields R. (2008). Nanofi bril reinforced composites from polymer blends. Colloids Surf. A Physicochem. Eng. Asp. 313 2-8. DOI: 10.1016/j. colsurfa.2007.05.038.

  • 20. Shah N. Ha J.H. Ul-Islam M. & Park J.K. (2011). Highly improved adsorption selectivity of L-phenylalanine imprinted polymeric submicron/nanoscale beads prepared by modifi ed suspension polymerization. Korean J. Chem. Eng. 28(9) 1936-44. DOI: 10.1007/s11814-011-0043-3.

  • 21. Huangfu F. Wang B. Shan J. & Zhang Z. ( 2013). Enantioselective analysis of naproxen using chiral molecular imprinting polymers based thin-layer chromatography. e-Polymers. 13(1) 180-188. DOI: 10.1515/epoly-2013-0117.

  • 22. Tiwari M.P. & Prasad A. (2015). Molecularly imprinted polymer based enantioselective sensing devices: A review. Anal. Chim. Acta 853 1-18. DOI: 10.1016/j.aca.2014.06.011.

  • 23. Yoshimi Y. & Ishii N. (2015). Improved gate effect enantioselectivity of phenylalanine-imprinted polymers in water by blending crosslinkers. Anal. Chim. Acta 862 77-85. DOI: 10.1016/j.aca.2015.01.001.

  • 24. Lehmann M. Brunner H. & Tovar G. (2002). Selective separations and hydrodynamic studies: a new approach using molecularly imprinted nanosphere composite membranes. Desalination 149(1) 315-21. DOI: 10.1016/S0011-9164(02)00754-3.

  • 25. Borrelli C. Barsanti S. Silvestri D. Manesiotis P. Ciardelli G. & Sellergren B. (2011). Selective depletion of riboflavine from beer using membranes incorporating imprinted polymer particles. J. Food Proc. Pres. 35(1) 112-128. DOI: 10.1111/j.1745-4549.2009.00464.x.

  • 26. Silvestri D. Barbani N. Cristallini C. Giusti P. & Ciardelli G. (2006). Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium. J. Membr. Sci. 282(1) 284-295. DOI: 10.1016/j.memsci.2006.05.031.

  • 27. Faizal C.K.M. & Kobayashi T. (2008). Tocopherol-targeted membrane adsorbents prepared by hybrid molecular imprinting. Polym. Eng. Sci. 48(6) 1085-1093. DOI: 10.1002/pen.21053.

  • 28. Roper D.K. & Lightfoot E.N. (1995). Separation of biomolecules using adsorptive membranes. J. Chromatogr. A. 702(1) 3-26. DOI: 10.1016/0021-9673(95)00010-K.

  • 29. Piletsky S. Panasyuk T. Piletskaya E. Nicholls I.A. & Ulbricht M. (1999). Receptor and transport properties of imprinted polymer membranes-a review. J. Membr. Sci. 157(2) 263-278. DOI: 10.1016/S0376-7388(99)00007-1.

  • 30. Suedee R. Bodhibukkana C. Tangthong N. Amnuaikit C. Kaewnopparat S. & Srichana T. (2008). Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane. J. Cont. Rel. 129(3) 170-8. DOI: 10.1016/j.jconrel.2008.05.001.

  • 31. Kubo T. Arimura S. Tominaga Y. Naito T. Hosoya K. & Otsuka K. (2015). Molecularly imprinted polymers for selective adsorption of lysozyme and cytochrome c using a PEG-based hydrogel: selective recognition for different conformations due to pH conditions. Macromolecules 48 4081-4087. DOI: 10.1021/acs.macromol.5b00834.

  • 32. Khan H. Khan T. & Park J.K. (2008). Separation of phenylalanine racemates using d-phenylalanine imprinted microbeads as HPLC stationary phase. Sep. Purif. Technol. 62(2) 363-369. DOI: 10.1016/j.seppur.2008.02.011.

  • 33. Khan H. & Park J.K. (2006). The preparation of D-phenylalanine imprinted microbeads by a novel method of modifi ed suspension polymerization. Biotechnol. Bioprocess Eng. 11(6) 503-509. DOI: 10.1007/BF02932074.

  • 34. Ul-Haq N. Khan T. & Park J.K. (2008). Enantioseparation with D-Phe- and L-Phe-imprinted PAN-based membranes by ultrafiltration. J. Chem. Tech. Biot. 83(4) 524-533. DOI: 10.1002/jctb.1827.

  • 35. Ellwange r A. Berggren C. Bayoudh S. Crecenzi C. Karlsson L. & Owens P.K. (2001). Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers. Analyst 126(6) 784-92. DOI: 10.1039/B009693H.

  • 36. Bhatia S. Tran K. Nguyen T. & Nicholson D. (2004). High-pressure adsorption capacity and structure of CO2 in carbon slit pores: theory and simulation. Langmuir 20(22) 9612-9620. DOI: 10.1021/la048571i.

  • 37. Li K. O lson D.H. Lee J.Y. Bi W. Wu K. & Yuen T. (2008). Multifunctional microporous MOFs exhibiting gas/ hydrocarbon adsorption selectivity separation capability and three-dimensional magnetic ordering. Adv. Funct. Mater. 18(15) 2205-2214. DOI: 10.1002/adfm.200800058.

  • 38. Hilal N. Kochkodan V. Busca G. Kochkodan O. & Atkin B. (2003). Thin layer composite molecularly imprinted membranes for selective separation of cAMP. Sep. Purif. Technol. 31(3) 281-289. DOI: 10.1016/S1383-5866(02)00205-8.

  • 39. Yoshikaw a M. Ooi T. & Izumi J.I. (2001). Novel membrane materials having EEE derivatives as a chiral recognition site. Eu. Polym. J. 37(2) 335-342. DOI: 10.1016/ S0014-3057(00)00121-X.

  • 40. Geens J. Hillen A. Bettens B. Van der Bruggen B. & Vandecasteele C. (2005). Solute transport in non-aqueous nanofiltration: effect of membrane material. J. Chem. Tech. Biot. 80(12) 1371-1377. DOI: 10.1002/jctb.1337.

  • 41. Székely G. Valtcheva I.B. Kim J.F. & Livingston A.G. (2015). Molecularly imprinted organic solvent nanofiltration membranes-Revealing molecular recognition and solute rejection behavior. React. Funct. Polym. 86 215-224. DOI: 10.1016/j.reactfunctpolym.2014.03.008.

  • 42. Park J. K. Chang H.N. Park J.H. & Earmme Y.Y. (1986). Direction-dependent flux anomalies in asymmetric reverseosmosis membranes. A theoretical analysis. Ind. Eng. Chem. 25(2) 189-195. DOI: 10.1021/i100022a003.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0,975
5-year IMPACT FACTOR: 0,878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 449 275 5
PDF Downloads 177 129 2