Open Access

Adsorptive molecularly imprinted composite membranes for chiral separation of phenylalanine


Cite

1. Takeda, K. & Kobayashi, T. (2006). Hybrid molecularly imprinted membranes for targeted bisphenol derivatives. J. Membr. Sci. 275(1), 61-9. DOI: 10.1016/j.memsci.2005.09.004.10.1016/j.memsci.2005.09.004Search in Google Scholar

2. Sharma, P.S., Iskierko, Z., Pietrzyk-Le, A., D’Souza, F. & Kutner, W. (2015). Bioinspired intelligent molecularly imprinted polymers for chemosensing: A mini review. Electrochem. Commun. 50, 81-87. DOI:10.1016/j.elecom.2014.11.019.10.1016/j.elecom.2014.11.019Search in Google Scholar

3. Lv, Y.K., Zhang, J.Q., He, Y.D., Zhang, J. & Sun, H.W. (2014). Adsorption-controlled preparation of molecularly imprinted hybrid composites for selective, extraction of tetracycline residues from honey and milk. New. J. Chem. 38, 802-808. DOI: 10.1039/C3NJ00962A.10.1039/c3nj00962aSearch in Google Scholar

4. Park, J.K. & Seo, J.I. (2002). Characteristics of phenylalanine imprinted membrane prepared by the wet phase inversion method. Korean J. Chem. Eng. 19(6), 940-8. DOI: 10.1007/ BF02707215.10.1007/BF02707215Search in Google Scholar

5. Park, J.K. & Kim, S.J. (2004). Separation of phenylalanine by ultrafiltration using D-Phe imprinted polyacrylonitrile-poly (acrylic acid)-poly (acryl amide) terpolymer membrane. Korean j. Chem. Eng. 21(5), 994-8. DOI: 10.1007/BF02705583.10.1007/BF02705583Search in Google Scholar

6. Scorrano, S., Mergola, L., Bello, M.P.D., Lazzoi, M.R., Vasapollo, G. & Sole, R.D. (2015). Molecularly imprinted composite membranes for selective detection of 2-deoxyadenosine in urine samples. Int. J. Mol. Sci. 16, 13746-13759. DOI: 10.3390/ijms160613746.10.3390/ijms160613746449052126086824Search in Google Scholar

7. Park, J.K., Kim, S.J. & Lee, J.W. (2003). Adsorption selectivity of phenylalanine imprinted polymer prepared by the wet phase inversion method. Korean J. Chem. Eng. 20(6), 1066-1072. DOI: 10.1007/BF02706937.10.1007/BF02706937Search in Google Scholar

8. Tasselli, F., Donato, L. & Drioli, E. (2008). Evaluation of molecularly imprinted membranes based on different acrylic copolymers. J. Membr. Sci. 320(1), 167-72. DOI: 10.1016/j. memsci.2008.03.071.Search in Google Scholar

9. Wu, Y., Liu, X., Meng, M., Li, P., Yan, M., Wei, X., Li, H., Yan, Y. & Li, C. (2015). Bio-inspired adhesion: Fabrication of molecularly imprinted nanocomposite membranes by developing a hybrid organic-inorganic nanoparticles composite structure. J. Membr. Sci. 490, 169-178. DOI: 10.1016/j.memsci.2015.04.023.10.1016/j.memsci.2015.04.023Search in Google Scholar

10. Zhou, Y., Zhou, T., Jin, H., Jing, T., Song, B., Zhou, Y., Mei, S. & Lee, Y.I. (2015). Rapid and selective extraction of multiple macrolide antibiotics in foodstuff samples based on magnetic molecularly imprinted polymers. Talanta 137, 1-10. DOI: 10.1016/j.talanta.2015.01.008.10.1016/j.talanta.2015.01.00825770599Search in Google Scholar

11. Algieri, C., Drioli, E., Guzzo, L. & Donato, L. (2014). Biomimetic sensors based on molecularly imprinted membranes. Sensors 14, 13863-13912. DOI: 10.3390/s140813863.10.3390/s140813863417905925196110Search in Google Scholar

12. Ulbrich t, M. (2004). Membrane separations using molecularly imprinted polymers. J. Chromatogr. B. 804(1), 113-25. DOI: 10.1016/j.jchromb.2004.02.007.10.1016/j.jchromb.2004.02.00715093165Search in Google Scholar

13. Jantarat, C., Tangthong, N., Songkro, S., Martin, G.P. & Suedee, R. (2008). S-Propranolol imprinted polymer nanoparticle-on-microsphere composite porous cellulose membrane for the enantioselectively controlled delivery of racemic propranolol. Int. J. Pharm. 349(1), 212-25. DOI: 10.1016/j. ijpharm.2007.07.030.Search in Google Scholar

14. Hilal, N., Kochkodan, V., Al-Khatib, L. & Busca, G. (2002). Characterization of molecularly imprinted composite membranes using an atomic force microscope. Surf. Inter. Anal. 33(8), 672-5. DOI: 10.1002/sia.1434.10.1002/sia.1434Search in Google Scholar

15. Wang, P., Hu, W. & Su, W. (2008). Molecularly imprinted poly (methacrylamide-co-methacrylic acid) composite membranes for recognition of curcumin. Anal. Chim. Acta 615(1), 54-62. DOI: 10.1016/j.aca.2008.03.040.10.1016/j.aca.2008.03.04018440363Search in Google Scholar

16. Laroche, M., Pukall, R. & Ulber, R. (2003). Gewinnung und Charakterisierung einer L-Serindehydratase aus dem marinen Bakterium Paracoccus seriniphilus zum Aufbau bioanalytischer Systeme. Chemie Ingenieur Technik 75(1-2), 146-9. DOI: 10.1002/cite.200390012.10.1002/cite.200390012Search in Google Scholar

17. Son, S.H . & Jegal, J. (2007). Chiral separation of D, Lserine racemate using a molecularly imprinted polymer composite membrane. J. Appl. Poly. Sci. 104(3), 1866-72. DOI: 10.1002/app.25845.10.1002/app.25845Search in Google Scholar

18. Yoshimatsu, K., Ye, L., Lindberg, J. & Chronakis, I.S. (2008). Selective molecular adsorption using electrospun nanofi ber affinity membranes. Biosens. Bioelectron. 23(7), 1208-15. DOI: 10.1016/j.bios.2007.12.002.10.1016/j.bios.2007.12.00218226521Search in Google Scholar

19. Fakirov, S., Bhattacharyya, D. & Shields, R. (2008). Nanofi bril reinforced composites from polymer blends. Colloids Surf. A Physicochem. Eng. Asp. 313, 2-8. DOI: 10.1016/j. colsurfa.2007.05.038.Search in Google Scholar

20. Shah, N., Ha, J.H., Ul-Islam, M. & Park, J.K. (2011). Highly improved adsorption selectivity of L-phenylalanine imprinted polymeric submicron/nanoscale beads prepared by modifi ed suspension polymerization. Korean J. Chem. Eng. 28(9), 1936-44. DOI: 10.1007/s11814-011-0043-3.10.1007/s11814-011-0043-3Search in Google Scholar

21. Huangfu, F., Wang, B., Shan, J. & Zhang, Z. ( 2013). Enantioselective analysis of naproxen using chiral molecular imprinting polymers based thin-layer chromatography. e-Polymers. 13(1), 180-188. DOI: 10.1515/epoly-2013-0117.10.1515/epoly-2013-0117Search in Google Scholar

22. Tiwari, M.P. & Prasad, A. (2015). Molecularly imprinted polymer based enantioselective sensing devices: A review. Anal. Chim. Acta 853, 1-18. DOI: 10.1016/j.aca.2014.06.011.10.1016/j.aca.2014.06.01125467446Search in Google Scholar

23. Yoshimi, Y. & Ishii, N. (2015). Improved gate effect enantioselectivity of phenylalanine-imprinted polymers in water by blending crosslinkers. Anal. Chim. Acta 862, 77-85. DOI: 10.1016/j.aca.2015.01.001.10.1016/j.aca.2015.01.00125682431Search in Google Scholar

24. Lehmann,, M. Brunner, H. & Tovar, G. (2002). Selective separations and hydrodynamic studies: a new approach using molecularly imprinted nanosphere composite membranes. Desalination 149(1), 315-21. DOI: 10.1016/S0011-9164(02)00754-3.10.1016/S0011-9164(02)00754-3Search in Google Scholar

25. Borrelli, C. Barsanti, S. Silvestri, D. Manesiotis, P. Ciardelli, G. & Sellergren, B. (2011). Selective depletion of riboflavine from beer using membranes incorporating imprinted polymer particles. J. Food Proc. Pres. 35(1), 112-128. DOI: 10.1111/j.1745-4549.2009.00464.x.10.1111/j.1745-4549.2009.00464.xSearch in Google Scholar

26. Silvestri, D., Barbani, N., Cristallini, C., Giusti, P. & Ciardelli, G. (2006). Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium. J. Membr. Sci. 282(1), 284-295. DOI: 10.1016/j.memsci.2006.05.031.10.1016/j.memsci.2006.05.031Search in Google Scholar

27. Faizal, C.K.M. & Kobayashi, T. (2008). Tocopherol-targeted membrane adsorbents prepared by hybrid molecular imprinting. Polym. Eng. Sci. 48(6), 1085-1093. DOI: 10.1002/pen.21053. 10.1002/pen.21053Search in Google Scholar

28. Roper, D.K. & Lightfoot, E.N. (1995). Separation of biomolecules using adsorptive membranes. J. Chromatogr. A. 702(1), 3-26. DOI: 10.1016/0021-9673(95)00010-K.10.1016/0021-9673(95)00010-KSearch in Google Scholar

29. Piletsky, S., Panasyuk, T., Piletskaya, E., Nicholls, I.A. & Ulbricht, M. (1999). Receptor and transport properties of imprinted polymer membranes-a review. J. Membr. Sci. 157(2), 263-278. DOI: 10.1016/S0376-7388(99)00007-1.10.1016/S0376-7388(99)00007-1Search in Google Scholar

30. Suedee, R., Bodhibukkana, C., Tangthong, N., Amnuaikit, C., Kaewnopparat, S. & Srichana, T. (2008). Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane. J. Cont. Rel. 129(3), 170-8. DOI: 10.1016/j.jconrel.2008.05.001.10.1016/j.jconrel.2008.05.00118550193Search in Google Scholar

31. Kubo, T., Arimura, S., Tominaga, Y., Naito, T. Hosoya, K. & Otsuka, K. (2015). Molecularly imprinted polymers for selective adsorption of lysozyme and cytochrome c using a PEG-based hydrogel: selective recognition for different conformations due to pH conditions. Macromolecules 48, 4081-4087. DOI: 10.1021/acs.macromol.5b00834.10.1021/acs.macromol.5b00834Search in Google Scholar

32. Khan, H., Khan, T. & Park, J.K. (2008). Separation of phenylalanine racemates using d-phenylalanine imprinted microbeads as HPLC stationary phase. Sep. Purif. Technol. 62(2), 363-369. DOI: 10.1016/j.seppur.2008.02.011.10.1016/j.seppur.2008.02.011Search in Google Scholar

33. Khan, H. & Park, J.K. (2006). The preparation of D-phenylalanine imprinted microbeads by a novel method of modifi ed suspension polymerization. Biotechnol. Bioprocess Eng. 11(6), 503-509. DOI: 10.1007/BF02932074.10.1007/BF02932074Search in Google Scholar

34. Ul-Haq, N. Khan, T. & Park, J.K. (2008). Enantioseparation with D-Phe- and L-Phe-imprinted PAN-based membranes by ultrafiltration. J. Chem. Tech. Biot. 83(4), 524-533. DOI: 10.1002/jctb.1827.10.1002/jctb.1827Search in Google Scholar

35. Ellwange r, A., Berggren, C., Bayoudh, S., Crecenzi, C., Karlsson, L. & Owens, P.K. (2001). Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers. Analyst 126(6), 784-92. DOI: 10.1039/B009693H.10.1039/b009693hSearch in Google Scholar

36. Bhatia, S., Tran, K., Nguyen, T. & Nicholson, D. (2004). High-pressure adsorption capacity and structure of CO2 in carbon slit pores: theory and simulation. Langmuir 20(22), 9612-9620. DOI: 10.1021/la048571i.10.1021/la048571iSearch in Google Scholar

37. Li, K., O lson, D.H., Lee, J.Y., Bi, W., Wu, K. & Yuen, T. (2008). Multifunctional microporous MOFs exhibiting gas/ hydrocarbon adsorption selectivity, separation capability and three-dimensional magnetic ordering. Adv. Funct. Mater. 18(15), 2205-2214. DOI: 10.1002/adfm.200800058.10.1002/adfm.200800058Search in Google Scholar

38. Hilal, N., Kochkodan, V., Busca, G., Kochkodan, O. & Atkin, B. (2003). Thin layer composite molecularly imprinted membranes for selective separation of cAMP. Sep. Purif. Technol. 31(3), 281-289. DOI: 10.1016/S1383-5866(02)00205-8.10.1016/S1383-5866(02)00205-8Search in Google Scholar

39. Yoshikaw a, M., Ooi, T. & Izumi, J.I. (2001). Novel membrane materials having EEE derivatives as a chiral recognition site. Eu. Polym. J. 37(2), 335-342. DOI: 10.1016/ S0014-3057(00)00121-X.10.1016/S0014-3057(00)00121-XSearch in Google Scholar

40. Geens, J., Hillen, A., Bettens, B., Van der Bruggen, B. & Vandecasteele, C. (2005). Solute transport in non-aqueous nanofiltration: effect of membrane material. J. Chem. Tech. Biot. 80(12), 1371-1377. DOI: 10.1002/jctb.1337.10.1002/jctb.1337Search in Google Scholar

41. Székely, G., Valtcheva, I.B., Kim, J.F. & Livingston, A.G. (2015). Molecularly imprinted organic solvent nanofiltration membranes-Revealing molecular recognition and solute rejection behavior. React. Funct. Polym. 86, 215-224. DOI: 10.1016/j.reactfunctpolym.2014.03.008.10.1016/j.reactfunctpolym.2014.03.008Search in Google Scholar

42. Park, J. K., Chang, H.N., Park, J.H. & Earmme Y.Y. (1986). Direction-dependent flux anomalies in asymmetric reverseosmosis membranes. A theoretical analysis. Ind. Eng. Chem. 25(2), 189-195. DOI: 10.1021/i100022a003. 10.1021/i100022a003Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering