Enzymatic activity of a novel halotolerant lipase from Haloarcula hispanica 2TK2

Open access

Abstract

A strain of Haloarcula hispanica isolated from Tuzkoy salt mine, Turkey exhibited extracellular lipolytic activity. Important parameters such as carbon sources and salt concentration for lipase production were investigated. Optimal conditions for the enzyme production from Haloarcula hispanica 2TK2 were determined. It was observed that the lipolytic activity of Haloarcula hispanica was stimulated by some of the carbon sources. The high lipase acitivity values were obtained in the presence of 2% (v/v) walnut oil (6.16 U/ml), 1% (v/v) fish oil (5.07 U/ml), 1% (v/v) olive oil (4.52 U/ml) and 1% (w/v) stearic acid (4.88 U/ml) at 4M NaCl concentration. Lipase was partially purified by ammonium sulfate precipitation and ultrafiltration. Optimal temperature and pH values were determined as 45°C and 8.0, respectively. Lipase activity decreased with the increasing salt concentration, but 85% activity of the enzyme was maintained at 5M NaCl concentration. The enzyme preserved 41% of its relative activity at 90°C. The partially purified lipase maintained its activity in the presence of surfactants such as Triton X-100 and SDS. Therefore, the lipase which is an extremozyme may have potential applications especially in detergent industry.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Ramos E.Z. Júnior R.H.M. de Castro P.F. Tardioli P.W. Mendes A.A. Fernandéz-Lafuente R. & Hirata D.B. (2015). Production and immobilization of Geotrichum candidum lipase via physical adsorption on eco-friendly support: Characterization of the catalytic properties in hydrolysis and esterification reactions. J. Mol. Catal. B-Enzym. 118 43–51. DOI: 10.1016/j.molcatb.2015.05.009.

  • 2. Maldonado R.R. Aguiar-Oliveira E. Pozza E.L. Costa F.A.A. Mazutti M.A. Maugeri F. & Rodrigues M.I. (2015). Application of yeast hydrolysate in extracellular lipase production by Geotrichum candidum in shaken flasks stirred tank and airlift reactors. Can. J. Chem. Eng. 93 1524–1530. DOI: 10.1002/cjce.22260.

  • 3. Souza R.L. Lima R.A. Coutinho J.A. Soares C.M. & Lima Á.S. (2015). Novel aqueous two-phase systems based on tetrahydrofuran and potassium phosphate buffer for purification of lipase. Process. Biochem. 50 1459–1467. DOI: 10.1016/j.procbio.2015.05.015.

  • 4. Gupta R. Gupta N. & Rathi P. (2004). Bacterial lipases: An overview of production purification and biochemical properties. Appl. Microbiol. Biotechnol. 64 763–781. DOI: 10.1007/s00253-004-1568-8.

  • 5. Beisson F. Tiss A. Rivière C. & Verger R. (2000). Methods for lipase detection and assay: A critical review. Eur. J. Lipid. Sci. Technol. 102 133–153. DOI: 10.1002/(SICI)1438–9312.

  • 6. Kushner D.J. (1993). Growth and nutrition of halophilic bacteria; In: R. H. Vreeland and L. Hochstein (eds): The Biology of Halophilic Bacteria (pp. 87–103). Boca Raton FL USA: CRC Press.

  • 7. Su J. Zhang F. Sun W. Karuppiah V. Zhang G. Li Z. & Jiang Q. (2015). A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp. World. J. Microb. Biot. 31 1093–1102.

  • 8. Oren A. (2002). Cellular Origin and Life in Extreme Habitats Halophilic Microorganisms and Their Environments (2002 ed.). NY USA: Kluwer Academic Publishers.

  • 9. Kushner D.J. (1978). Life in high salt and solute concentrations: halophilic bacteria; In: Kushner D.J. (ed.) Microbial Life in Extreme Environments (pp. 317–368). London UK: Academic Press.

  • 10. Oren A. (2000). Life at high salt concentrations; In: The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophsiology Isolation Identifications Applications (3rd ed.). NY USA: Springer Verlag.

  • 11. MacElroy R.D. (1974). Some comments on the evolution of extremophiles. Biosystems 6 74–75. DOI: Not found.

  • 12. Eichler J. (2001). Biotechnological uses of archaeal extremozymes. Biotechnol. Adv. 19 261–278. DOI: 10.1016/S0734-9750(01)00061-1.

  • 13. Gomes J. & Steiner W. (2004). The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol. 42 223–235. DOI: Not found.

  • 14. van den Burg B. (2003). Extremophiles as a source for novel enzymes. Curr Opin Microbiol. 6 213–218. DOI: 10.1016/S1369-5274(03)00060-2.

  • 15. Emampour M. Noghabi K.A. & Zahiri H.S. (2015). Molecular cloning and biochemical characterization of a novel cold-adapted alpha-amylase with multiple extremozyme characteristics. J. Mol. Catal. B: Enzym. 111 79–86. DOI: 10.1016/j.molcatb.2014.10.012

  • 16. Brown A.D. (1963). The peripheral structures of Gramnegative bacteria. IV. The cation-sensitive dissolution of the cell membrane of the halophilic bacterium Halobacterium halobium. Biochim. Biophys. Acta 75 425–435. DOI: 10.1016/0006-3002(63)90630-9.

  • 17. Attar A. Ogan A. Yucel S. & Turan K. (2016). The potential of archaeosomes as carriers of pDNA into mammalian cells. Artif Cells Nanomed Biotechnol. 44 710–716. DOI: 10.3109/21691401.2014.982800.

  • 18. Ozcan B. Ozyilmaz G. Cokmus C. & Caliskan M. (2009). Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J. Ind. Microbiol. Biotechnol. 36 105–110. DOI: 10.1007/s10295-008-0477-8.

  • 19. Daoud L. Kamoun J. Ali M.B. Jallouli R. Bradai R. Mechichi T. Gargouri Y. Ali Y.B. & Aloulou A. (2013). Purification and biochemical characterization of a halotolerant Staphylococcus sp. extracellular lipase. Int. J. Biol. Macromol. 57 232–237. DOI: 10.1016/j.ijbiomac.2013.03.018.

  • 20. Boutaiba S. Bhatnagar T. Hacene H. Mitchell D.A. & Baratti J.C. (2006). Preliminary characterization of a lipolytic activity from an extremely halophilic archaeon Natronococcus sp. J. Mol. Catal. B: Enzym. 41 21–26. DOI: 10.1016/j.molcatb.2006.03.010.

  • 21. Rohban R. Amoozegar M.A. & Ventosa A. (2009). Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake Iran. J. Ind. Microbiol. Biotechnol. 36 333–340. DOI: 10.1007/s10295-008-0500-0.

  • 22. Sugihara A. Tani T. & Tominaga Y. (1991). Purification and characterization of a novel thermostable lipase from Bacillus sp. J. Biochem. 109 211–216. DOI: Not found.

  • 23. Sugiura M. Oikawa T. Hirano K. & Inukai T. (1977). Purification crystallization and properties of triacylglycerol lipase from Pseudomonas fluorescens. Biochim. Biophys. Acta 488 353–358. DOI: 10.1016/0005-2760(77)90194-1.

  • 24. Arpigny J.L. Jendrossek D. & Jaeger K.E. (1998). A novel heat-stable lipolytic enzyme from Sulfolobus acidocaldarius DSM 639 displaying similarity to polyhydroxyalkanoate depolymerases. FEMS Microbiol. Lett. 167 69–73. DOI: 10.1111/j.1574-6968.1998.tb13209.x.

  • 25. Kim H.K. Jung Y.J. Choi W.C. Ryu H.S. Oh T.K. & Lee J.K. (2004). Sequence-based approach to finding functional lipases from microbial genome databases. FEMS Microbiol. Lett. 235 349–355. DOI: 10.1111/j.1574-6968.2004.tb09609.x.

  • 26. Sengel B.S. (2007). Investigation of microbial lipase production conditions as detergent additive. Unpublished dissertation. Ankara University Ankara Turkey.

  • 27. Pérez D. Martín S. Fernández-Lorente G. Filice M. Guisán J.M. Ventosa A. & Mellado E. (2011). A novel halophilic lipase LipBL showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6(8):e23325. DOI: 10.1371/journal.pone.0023325.

  • 28. Bhatnagar T. Boutaiba S. Hacene H. Cayol J.L. Fardeau M.L. Ollivier B. & Baratti J.C. (2005). Lipolytic activity from Halobacteria: Screening and hydrolase production. FEMS Microbiol. Lett. 248 133–140. DOI: 10.1016/j.femsle.2005.05.044.

  • 29. Gutarra M.L.E. Godoy M.G. Maugeri F. Rodrigues M.I. Freire D.M.G. & Castilho L.R. (2009). Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresour Technol. 100 5249–5254. DOI: 10.1016/j.biortech.2008.08.050.

  • 30. Li X. & Yu H.Y. (2014). Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol. 59 455–463. DOI: 10.1007/s12223-014-0320-8.

  • 31. Muller-Santos M. de Souza E.M. Pedrosa F.O. Mitchell D.A. Longhi S. Carriere F. Canaan S. & Krieger N. (2009). First evidence for the salt dependent folding and activity of an esterase from halophilic archae Haloarcula marismortui. Biochim. Biophys. Acta 1791 719–729. DOI: 10.1016/j.bbalip.2009.03.006.

  • 32. Camacho R.M. Mateos J.C. Gonzalez-Reynoso O. Prado L.A. & Cordova J. (2009). Production and characterization of esterase and lipase from Haloarcula marismortui. J. Ind. Microbiol. Biotechnol. 36 901–909. DOI: 10.1007/s10295-009-0568-1.

  • 33. Delorme V. Dhouib R. Canaan S. Fotiadu F. Carrière F. & Cavalier J.F. (2011). Effects of surfactants on lipase structure activity and inhibition. Pharm. Res. 28 1831–1842. DOI: 10.1007/s11095-010-0362-9.

  • 34. Palacios D. Busto M.D. & Ortega N. (2014). Study of a new spectrophotometric end-point assay for lipase activity determination in aqueous media. LWT-Food Sci. Technol. 55 536–542. DOI: 10.1016/j.lwt.2013.10.027.

  • 35. Takac S. & Sengel S. (2010). Extracellular lipolytic enzyme activity of a newly isolated Debaryomyces hansenii. Prep Biochem. Biotechnol. 40 28–37. DOI: 10.1080/10826060903388820.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 467 197 16
PDF Downloads 204 128 16