Open Access

Enzymatic activity of a novel halotolerant lipase from Haloarcula hispanica 2TK2


Cite

1. Ramos, E.Z., Júnior, R.H.M., de Castro, P.F., Tardioli, P.W., Mendes, A.A., Fernandéz-Lafuente, R. & Hirata, D.B. (2015). Production and immobilization of Geotrichum candidum lipase via physical adsorption on eco-friendly support: Characterization of the catalytic properties in hydrolysis and esterification reactions. J. Mol. Catal. B-Enzym. 118, 43–51. DOI: 10.1016/j.molcatb.2015.05.009.10.1016/j.molcatb.2015.05.009Search in Google Scholar

2. Maldonado, R.R., Aguiar-Oliveira, E., Pozza, E.L., Costa, F.A.A., Mazutti, M.A., Maugeri, F. & Rodrigues, M.I. (2015). Application of yeast hydrolysate in extracellular lipase production by Geotrichum candidum in shaken flasks, stirred tank, and airlift reactors. Can. J. Chem. Eng. 93, 1524–1530. DOI: 10.1002/cjce.22260.10.1002/cjce.22260Search in Google Scholar

3. Souza, R.L., Lima, R.A., Coutinho, J.A., Soares, C.M. & Lima, Á.S. (2015). Novel aqueous two-phase systems based on tetrahydrofuran and potassium phosphate buffer for purification of lipase. Process. Biochem. 50, 1459–1467. DOI: 10.1016/j.procbio.2015.05.015.10.1016/j.procbio.2015.05.015Search in Google Scholar

4. Gupta, R., Gupta, N. & Rathi, P. (2004). Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 64, 763–781. DOI: 10.1007/s00253-004-1568-8.10.1007/s00253-004-1568-8Search in Google Scholar

5. Beisson, F., Tiss, A., Rivière, C. & Verger, R. (2000). Methods for lipase detection and assay: A critical review. Eur. J. Lipid. Sci. Technol. 102, 133–153. DOI: 10.1002/(SICI)1438–9312.Search in Google Scholar

6. Kushner, D.J. (1993). Growth and nutrition of halophilic bacteria; In: R. H. Vreeland and L. Hochstein (eds): The Biology of Halophilic Bacteria (pp. 87–103). Boca Raton, FL, USA: CRC Press.Search in Google Scholar

7. Su, J., Zhang, F., Sun, W., Karuppiah, V., Zhang, G., Li, Z. & Jiang, Q. (2015). A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp. World. J. Microb. Biot. 31, 1093–1102.10.1007/s11274-015-1859-5Search in Google Scholar

8. Oren, A. (2002). Cellular Origin and Life in Extreme Habitats, Halophilic Microorganisms and Their Environments (2002 ed.). NY, USA: Kluwer Academic Publishers.10.1007/0-306-48053-0Search in Google Scholar

9. Kushner, D.J. (1978). Life in high salt and solute concentrations: halophilic bacteria; In: Kushner D.J. (ed.) Microbial Life in Extreme Environments (pp. 317–368). London, UK: Academic Press.Search in Google Scholar

10. Oren, A. (2000). Life at high salt concentrations; In: The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophsiology, Isolation, Identifications, Applications (3rd ed.). NY, USA: Springer Verlag.Search in Google Scholar

11. MacElroy, R.D. (1974). Some comments on the evolution of extremophiles. Biosystems 6, 74–75. DOI: Not found.10.1016/0303-2647(74)90026-4Search in Google Scholar

12. Eichler, J. (2001). Biotechnological uses of archaeal extremozymes. Biotechnol. Adv. 19, 261–278. DOI: 10.1016/S0734-9750(01)00061-1.10.1016/S0734-9750(01)00061-1Search in Google Scholar

13. Gomes, J. & Steiner, W. (2004). The biocatalytic potential of extremophiles and extremozymes. Food Technol. Biotechnol. 42, 223–235. DOI: Not found.Search in Google Scholar

14. van den Burg, B. (2003). Extremophiles as a source for novel enzymes. Curr Opin Microbiol. 6, 213–218. DOI: 10.1016/S1369-5274(03)00060-2.10.1016/S1369-5274(03)00060-2Search in Google Scholar

15. Emampour, M., Noghabi, K.A. & Zahiri, H.S. (2015). Molecular cloning and biochemical characterization of a novel cold-adapted alpha-amylase with multiple extremozyme characteristics. J. Mol. Catal. B: Enzym. 111, 79–86. DOI: 10.1016/j.molcatb.2014.10.01210.1016/j.molcatb.2014.10.012Search in Google Scholar

16. Brown, A.D. (1963). The peripheral structures of Gramnegative bacteria. IV. The cation-sensitive dissolution of the cell membrane of the halophilic bacterium Halobacterium halobium. Biochim. Biophys. Acta 75, 425–435. DOI: 10.1016/0006-3002(63)90630-9.10.1016/0006-3002(63)90630-9Search in Google Scholar

17. Attar, A., Ogan, A., Yucel, S. & Turan, K. (2016). The potential of archaeosomes as carriers of pDNA into mammalian cells. Artif Cells Nanomed Biotechnol. 44, 710–716. DOI: 10.3109/21691401.2014.982800.10.3109/21691401.2014.982800Search in Google Scholar

18. Ozcan, B., Ozyilmaz, G., Cokmus, C. & Caliskan, M. (2009). Characterization of extracellular esterase and lipase activities from five halophilic archaeal strains. J. Ind. Microbiol. Biotechnol. 36, 105–110. DOI: 10.1007/s10295-008-0477-8.10.1007/s10295-008-0477-8Search in Google Scholar

19. Daoud, L., Kamoun, J., Ali, M.B., Jallouli, R., Bradai, R., Mechichi, T., Gargouri, Y. Ali, Y.B. & Aloulou, A. (2013). Purification and biochemical characterization of a halotolerant Staphylococcus sp. extracellular lipase. Int. J. Biol. Macromol. 57, 232–237. DOI: 10.1016/j.ijbiomac.2013.03.018.10.1016/j.ijbiomac.2013.03.018Search in Google Scholar

20. Boutaiba, S., Bhatnagar, T., Hacene, H., Mitchell, D.A. & Baratti, J.C. (2006). Preliminary characterization of a lipolytic activity from an extremely halophilic archaeon Natronococcus sp. J. Mol. Catal. B: Enzym. 41, 21–26. DOI: 10.1016/j.molcatb.2006.03.010.10.1016/j.molcatb.2006.03.010Search in Google Scholar

21. Rohban, R., Amoozegar, M.A. & Ventosa, A. (2009). Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 36, 333–340. DOI: 10.1007/s10295-008-0500-0.10.1007/s10295-008-0500-0Search in Google Scholar

22. Sugihara, A., Tani, T. & Tominaga, Y. (1991). Purification and characterization of a novel thermostable lipase from Bacillus sp. J. Biochem. 109, 211–216. DOI: Not found.Search in Google Scholar

23. Sugiura, M., Oikawa, T., Hirano, K. & Inukai, T. (1977). Purification, crystallization and properties of triacylglycerol lipase from Pseudomonas fluorescens. Biochim. Biophys. Acta 488, 353–358. DOI: 10.1016/0005-2760(77)90194-1.10.1016/0005-2760(77)90194-1Search in Google Scholar

24. Arpigny, J.L., Jendrossek, D. & Jaeger, K.E. (1998). A novel heat-stable lipolytic enzyme from Sulfolobus acidocaldarius DSM 639 displaying similarity to polyhydroxyalkanoate depolymerases. FEMS Microbiol. Lett. 167, 69–73. DOI: 10.1111/j.1574-6968.1998.tb13209.x.10.1111/j.1574-6968.1998.tb13209.x9785454Search in Google Scholar

25. Kim, H.K., Jung, Y.J., Choi, W.C., Ryu, H.S., Oh, T.K. & Lee, J.K. (2004). Sequence-based approach to finding functional lipases from microbial genome databases. FEMS Microbiol. Lett. 235, 349–355. DOI: 10.1111/j.1574-6968.2004.tb09609.x.10.1111/j.1574-6968.2004.tb09609.xSearch in Google Scholar

26. Sengel, B.S. (2007). Investigation of microbial lipase production conditions as detergent additive. Unpublished dissertation. Ankara University, Ankara, Turkey.Search in Google Scholar

27. Pérez, D., Martín, S., Fernández-Lorente, G., Filice, M., Guisán, J.M., Ventosa, A. & Mellado, E. (2011). A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6(8):e23325. DOI: 10.1371/journal.pone.0023325.10.1371/journal.pone.0023325315443821853111Search in Google Scholar

28. Bhatnagar, T., Boutaiba, S., Hacene, H., Cayol, J.L., Fardeau, M.L., Ollivier, B. & Baratti, J.C. (2005). Lipolytic activity from Halobacteria: Screening and hydrolase production. FEMS Microbiol. Lett. 248, 133–140. DOI: 10.1016/j.femsle.2005.05.044.10.1016/j.femsle.2005.05.04415979821Search in Google Scholar

29. Gutarra, M.L.E., Godoy, M.G., Maugeri, F., Rodrigues, M.I., Freire, D.M.G. & Castilho, L.R. (2009). Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresour Technol. 100, 5249–5254. DOI: 10.1016/j.biortech.2008.08.050.10.1016/j.biortech.2008.08.05019560339Search in Google Scholar

30. Li, X. & Yu, H.Y. (2014). Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production. Folia Microbiol. 59, 455–463. DOI: 10.1007/s12223-014-0320-8.10.1007/s12223-014-0320-824789461Search in Google Scholar

31. Muller-Santos, M., de Souza, E.M., Pedrosa, F.O., Mitchell, D.A., Longhi, S., Carriere, F., Canaan, S. & Krieger, N. (2009). First evidence for the salt dependent folding and activity of an esterase from halophilic archae Haloarcula marismortui. Biochim. Biophys. Acta 1791, 719–729. DOI: 10.1016/j.bbalip.2009.03.006.10.1016/j.bbalip.2009.03.00619303051Search in Google Scholar

32. Camacho, R.M., Mateos, J.C., Gonzalez-Reynoso, O., Prado, L.A. & Cordova, J. (2009). Production and characterization of esterase and lipase from Haloarcula marismortui. J. Ind. Microbiol. Biotechnol. 36, 901–909. DOI: 10.1007/s10295-009-0568-1.10.1007/s10295-009-0568-119350295Search in Google Scholar

33. Delorme, V., Dhouib, R., Canaan, S., Fotiadu, F., Carrière, F. & Cavalier, J.F. (2011). Effects of surfactants on lipase structure, activity, and inhibition. Pharm. Res. 28, 1831–1842. DOI: 10.1007/s11095-010-0362-9.10.1007/s11095-010-0362-921234659Search in Google Scholar

34. Palacios, D., Busto, M.D. & Ortega, N. (2014). Study of a new spectrophotometric end-point assay for lipase activity determination in aqueous media. LWT-Food Sci. Technol. 55, 536–542. DOI: 10.1016/j.lwt.2013.10.027.10.1016/j.lwt.2013.10.027Search in Google Scholar

35. Takac, S. & Sengel, S. (2010). Extracellular lipolytic enzyme activity of a newly isolated Debaryomyces hansenii. Prep Biochem. Biotechnol. 40, 28–37. DOI: 10.1080/10826060903388820.10.1080/1082606090338882020024792Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering