Application of pyrolysis process in processing of mixed food wastes

Open access


The food industry produces large amounts of solid and also liquid wastes. Different waste materials and their mixtures were pyrolysed in the laboratory pyrolysis unit to a final temperature of 800°C with a 10 minute delay at the final temperature. After the pyrolysis process of the selected wastes a mass balance of the resulting products, off-line analysis of the pyrolysis gas and evaluation of solid and liquid products were carried out. The highest concentration of methane, hydrogen and carbon monoxide were analyzed during the 4th gas sampling at a temperature of approx. 720–780°C. The concentration of hydrogen was measured in the range from 22 to 40 vol.%. The resulting iodine numbers of samples CHFO, DS, DSFW reach values that indicate the possibility of using them to produce the so-called “disposable sorbents” in wastewater treatment. The WC condensate can be directed to further processing and upgrading for energy use.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Official Journal L 182 16/07/1999 1–19.

  • 2. Rusín J. Chamrádová K. Obroučka K. & Kuča R. (2012). Methane production during laboratory-scale co-digestion of cattle slurry with 10 wt. % of various biowastes. Pol. J.Chem. Technol. 14(1) 14–20. DOI: 10.2478/v10026-012-0053-x.

  • 3. Tronina P. & Bubel F. (2008). Food industry waste composting in a rotational reactor. Pol. J.Chem. Technol. 10(2) 37–42. DOI: 10.2478/v10026-008-0026-2.

  • 4. Obroučka K. (2001). Thermal removal and energetic use of wastes. 1. ed. script. Ostrava: VŠB-TUO.

  • 5. Jílková L. Ciahotný K. & Černý R. (2012). Technologie pro pyrolýzu paliv a odpadů. Paliva 4(3) 74–80.

  • 6. Holcová P. & Kaloč M. (2006). Hodnocení vlastností pyrolýzních produktů z odpadní biomasy. In Úprava nerostných surovin (pp. 63–71). VŠB TU Ostrava.

  • 7. Ahmed I.I. & Gupta A.K. (2010). Pyrolysis and gasification of food waste. Syngas characteristics and char gasification kinetics. Appl. Ener. 87(1) 101–108. DOI: 10.1016/j.apenergy.2009.08.032.

  • 8. Puangubol S. Utistham T. & Wetwatana U. (2011). Production of bio-oil by hydrothermal pyrolysis of food waste over ceria catalyst. Curr. Opin. Biotech. 22(1) 49. DOI: 10.1016/j.copbio.2011.05.128.

  • 9. Önal Eylem P. Uzun Basak B. Putun & Ayse E. (2011). Steam pyrolysis of an industrial waste for bio-oil production. Fuel Process. Technol. 92(5) 879–885. DOI: 10.1016/j.fuproc.2010.12.006.

  • 10. Haili L. Xiaogian M. Longjun L. Zhifeng H. Pingsheng G. & Juhui J. (2014). The catalytic pyrolysis of food waste by microwave heating. Biores. Technol. 166 45–50. DOI: 10.1016/j.biortech.2014.05.020.

  • 11. Hyeon S.H. Sang G.K. Kwang-Eun J. & Jong-Ki J. (2011). Catalytic upgrading of oil fractions separated from food waste leachate. Biores. Technol. 104(4) 3952–3957. DOI: 10.1016/j.biortech.2010.11.099.

  • 12. Kalinci I. Hepbasli A. & Dincer I. (2009). Biomass-based hydrogen production: A review and analysis. Inter. J. Hydro. Ener. 34(21) 8799–8817. DOI: 10.1016/j.ijhydene.2009.08.078.

  • 13. Liu H. Zhang Q. Hu H. LI A. & Yao H. (2014). Influence of residual moisture on deep dewatered sludge pyrolysis. Inter. J. Hydro. Ener. 39(3) 1253–1261. DOI: 10.1016/j.ijhydene.2013.10.050.

  • 14. Ma Z. Zhang S.P. Xie D.Y. & Yan Y.J. (2014). A novel integrated process for hydrogen production from biomass. Inter. J. Hydro. Ener. 39(3) 1274–1279. DOI: 10.1016/j.ijhydene.2013.10.146.

  • 15. Kim S.C. Lim M.S. & Chun Y.N. (2013). Hydrogenrich gas production from a biomass pyrolysis gas by using a plasmatron. Inter. J. Hydro. Ener. 38(34) 14458–14466. DOI: 10.1016/j.ijhydene.2013.09.004.

  • 16. Bičáková O. & Straka P. (2012). Production of hydrogen from renewable resources and its effectiveness. Inter. J. Hydro. Ener. 37(16) 11563–11578. DOI: 10.1016/j.ijhydene.2012.05.047.

  • 17. DIN 53582. (1983). Prüfung von Ruβen; Bestimmung der Jodadsorptionszahl (Testing of carbon black; determination of iodine adsorption number).

  • 18. Momčilović M. Purenović M. Bojić A. Zarubica A. & Rendelović M. (2011). Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276(1–3) 53–59. DOI: 10.1016/j.desal.2011.03.013.

  • 19. Foo K.Y. & Hameed B.H. (2011). Preparation and characterization of activated carbon from pistachio nut shells via microwave – induced chemical activation. Biomass and Bioenergy 35(7) 3257–3261. DOI: 10.1016/j.biombioe.2011.04.023.

  • 20. Foo K.Y. & Hameed B.H. (2011). Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes. Chem. Engineer. J. 173(2) 385–390. DOI: 10.1016/j.cej.2011.07.073.

  • 21. Mouni L. Merabet D. Bouzaza A. & Belkhiri L. (2011). Adsorption of Pb (II) from aquaeous solutions using activated carbon developer from apricot stone. Desalination 276(1–3) 148–153. DOI: 10.1016/j.desal.2011.03.038.

  • 22. Kazmi M. Saleemi A.R. Feroze N. Yaqoob A. & Ahmad S.W. (2013). Removal of phenol from wastewater using activated waste tea leaves. Pol. J. Chem. Technol. 15 (2) 1–6. DOI: 10.2478/pjet-2013-0016.

  • 23. Otero M. Rozada F. Calvo L.F. Garcia A.I. & Moran A. (2003). Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges. Biochem. Eng. J. 15(1) 59–68. DOI: 10.1016/S1369-703X(02)00177-8.

  • 24. Siyal A.N. Memon S.Q. Amanullah M. Pirzada T. Parveen S. & Sodho N.A. (2013). Multi-variant sorption optimization for the uptake of Pb(II) ions by Jamun Seed Waste. Pol. J. Chem. Technol. 15 (1) 15–21. DOI: 10.2478/pjct-2013-0004.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 773 533 7
PDF Downloads 274 190 2