Cite

1. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Official Journal L 182, 16/07/1999, 1–19.Search in Google Scholar

2. Rusín, J., Chamrádová, K., Obroučka, K. & Kuča, R. (2012). Methane production during laboratory-scale co-digestion of cattle slurry with 10 wt. % of various biowastes. Pol. J.Chem. Technol. 14(1), 14–20. DOI: 10.2478/v10026-012-0053-x.10.2478/v10026-012-0053-xSearch in Google Scholar

3. Tronina, P. & Bubel, F. (2008). Food industry waste composting in a rotational reactor. Pol. J.Chem. Technol. 10(2), 37–42. DOI: 10.2478/v10026-008-0026-2.10.2478/v10026-008-0026-2Search in Google Scholar

4. Obroučka, K. (2001). Thermal removal and energetic use of wastes. 1. ed. script. Ostrava: VŠB-TUO.Search in Google Scholar

5. Jílková, L., Ciahotný, K. & Černý, R. (2012). Technologie pro pyrolýzu paliv a odpadů. Paliva 4(3), 74–80.10.35933/paliva.2012.03.03Search in Google Scholar

6. Holcová, P. & Kaloč, M. (2006). Hodnocení vlastností pyrolýzních produktů z odpadní biomasy. In Úprava nerostných surovin (pp. 63–71). VŠB TU Ostrava.Search in Google Scholar

7. Ahmed, I.I. & Gupta, A.K. (2010). Pyrolysis and gasification of food waste. Syngas characteristics and char gasification kinetics. Appl. Ener. 87(1), 101–108. DOI: 10.1016/j.apenergy.2009.08.032.10.1016/j.apenergy.2009.08.032Search in Google Scholar

8. Puangubol, S., Utistham, T. & Wetwatana, U. (2011). Production of bio-oil by hydrothermal pyrolysis of food waste over ceria catalyst. Curr. Opin. Biotech. 22(1), 49. DOI: 10.1016/j.copbio.2011.05.128.10.1016/j.copbio.2011.05.128Search in Google Scholar

9. Önal, Eylem P., Uzun, Basak B., Putun & Ayse, E. (2011). Steam pyrolysis of an industrial waste for bio-oil production. Fuel Process. Technol. 92(5), 879–885. DOI: 10.1016/j.fuproc.2010.12.006.10.1016/j.fuproc.2010.12.006Search in Google Scholar

10. Haili, L., Xiaogian, M., Longjun, L., Zhifeng, H., Pingsheng, G. & Juhui, J. (2014). The catalytic pyrolysis of food waste by microwave heating. Biores. Technol. 166, 45–50. DOI: 10.1016/j.biortech.2014.05.020.10.1016/j.biortech.2014.05.02024905041Search in Google Scholar

11. Hyeon, S.H., Sang, G.K., Kwang-Eun, J. & Jong-Ki, J. (2011). Catalytic upgrading of oil fractions separated from food waste leachate. Biores. Technol. 104(4), 3952–3957. DOI: 10.1016/j.biortech.2010.11.099.10.1016/j.biortech.2010.11.09921177101Search in Google Scholar

12. Kalinci, I., Hepbasli, A. & Dincer, I. (2009). Biomass-based hydrogen production: A review and analysis. Inter. J. Hydro. Ener. 34(21), 8799–8817. DOI: 10.1016/j.ijhydene.2009.08.078.10.1016/j.ijhydene.2009.08.078Search in Google Scholar

13. Liu, H., Zhang, Q., Hu, H., LI, A. & Yao, H. (2014). Influence of residual moisture on deep dewatered sludge pyrolysis. Inter. J. Hydro. Ener. 39(3), 1253–1261. DOI: 10.1016/j.ijhydene.2013.10.050.10.1016/j.ijhydene.2013.10.050Search in Google Scholar

14. Ma, Z., Zhang, S.P., Xie, D.Y. & Yan, Y.J. (2014). A novel integrated process for hydrogen production from biomass. Inter. J. Hydro. Ener. 39(3), 1274–1279. DOI: 10.1016/j.ijhydene.2013.10.146.10.1016/j.ijhydene.2013.10.146Search in Google Scholar

15. Kim, S.C., Lim, M.S. & Chun, Y.N. (2013). Hydrogenrich gas production from a biomass pyrolysis gas by using a plasmatron. Inter. J. Hydro. Ener. 38(34), 14458–14466. DOI: 10.1016/j.ijhydene.2013.09.004.10.1016/j.ijhydene.2013.09.004Search in Google Scholar

16. Bičáková, O. & Straka, P. (2012). Production of hydrogen from renewable resources and its effectiveness. Inter. J. Hydro. Ener. 37(16), 11563–11578. DOI: 10.1016/j.ijhydene.2012.05.047.10.1016/j.ijhydene.2012.05.047Search in Google Scholar

17. DIN 53582. (1983). Prüfung von Ruβen; Bestimmung der Jodadsorptionszahl (Testing of carbon black; determination of iodine adsorption number).Search in Google Scholar

18. Momčilović, M., Purenović, M., Bojić, A., Zarubica, A. & Rendelović, M. (2011). Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination 276(1–3), 53–59. DOI: 10.1016/j.desal.2011.03.013.10.1016/j.desal.2011.03.013Search in Google Scholar

19. Foo, K.Y. & Hameed, B.H. (2011). Preparation and characterization of activated carbon from pistachio nut shells via microwave – induced chemical activation. Biomass and Bioenergy 35(7), 3257–3261. DOI: 10.1016/j.biombioe.2011.04.023.10.1016/j.biombioe.2011.04.023Search in Google Scholar

20. Foo, K.Y. & Hameed, B.H. (2011). Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes. Chem. Engineer. J. 173(2), 385–390. DOI: 10.1016/j.cej.2011.07.073.10.1016/j.cej.2011.07.073Search in Google Scholar

21. Mouni, L., Merabet, D., Bouzaza, A. & Belkhiri, L. (2011). Adsorption of Pb (II) from aquaeous solutions using activated carbon developer from apricot stone. Desalination 276(1–3), 148–153. DOI: 10.1016/j.desal.2011.03.038.10.1016/j.desal.2011.03.038Search in Google Scholar

22. Kazmi, M., Saleemi, A.R., Feroze, N., Yaqoob, A. & Ahmad, S.W. (2013). Removal of phenol from wastewater using activated waste tea leaves. Pol. J. Chem. Technol. 15 (2), 1–6. DOI: 10.2478/pjet-2013-0016.Search in Google Scholar

23. Otero, M., Rozada, F., Calvo, L.F., Garcia, A.I. & Moran, A. (2003). Kinetic and equilibrium modelling of the methylene blue removal from solution by adsorbent materials produced from sewage sludges. Biochem. Eng. J. 15(1), 59–68. DOI: 10.1016/S1369-703X(02)00177-8.10.1016/S1369-703X(02)00177-8Search in Google Scholar

24. Siyal, A.N., Memon, S.Q., Amanullah, M., Pirzada, T., Parveen, S. & Sodho, N.A. (2013). Multi-variant sorption optimization for the uptake of Pb(II) ions by Jamun Seed Waste. Pol. J. Chem. Technol. 15 (1), 15–21. DOI: 10.2478/pjct-2013-0004.10.2478/pjct-2013-0004Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering