Studies of polypropylene membrane fouling during microfiltration of broth with Citrobacter freundii bacteria

Open access

Abstract

In this work a fouling study of polypropylene membranes used for microfiltration of glycerol solutions fermented by Citrobacter freundii bacteria was presented. The permeate free of C. freundii bacteria and having a turbidity in the range of 0.72–1.46 NTU was obtained. However, the initial permeate flux (100–110 L/m2h at 30 kPa of transmembrane pressure) was decreased 3–5 fold during 2–3 h of process duration. The performed scanning electron microscope observations confirmed that the filtered bacteria and suspensions present in the broth formed a cake layer on the membrane surface. A method of periodical module rinsing was used for restriction of the fouling influence on a flux decline. Rinsing with water removed most of the bacteria from the membrane surface, but did not permit to restore the initial permeate flux. It was confirmed that the irreversible fouling was dominated during broth filtration. The formed deposit was removed using a 1 wt% solution of sodium hydroxide as a rinsing solution.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Cui Z.F. & Muralidhara H.S. (Eds.). (2010). Membrane technology. A practical guide to membrane technology and applications in food and bioprocessing. Oxford UK: Elsevier.

  • 2. Sadr Ghayeni S.B. Beatson P.J. Fane A.J. & Schneider R.P. (1999). Bacterial passage through microfiltration membranes in wastewater applications. J. Membr. Sci. 153 71–82. DOI: 10.1016/S0376-7388(98)00251-8.

  • 3. Avci F.G. Huccetogullari D. & Azbar N. (2014). The effects of cell recycling on the production of 13-propanediol by Klebsiella pneumonia. Bioprocess Biosyst. Eng. 37 513–519. DOI: 10.1007/s00449-013-1018-z.

  • 4. Noworyta A. Trusek-Holownia A. Mielczarski S. & Kubasiewicz-Ponitka M. (2006). An integrated pervaporation-biodegradation process of phenolic wastewater treatment. Desalination. 198 191–197. DOI: 10.1016/j.desal.2006.01.025.

  • 5. Tomczak W. (2014). Badania rozdzielania brzeczek fermentacyjnych technikami membranowymi (Studies of broths separation by membrane processes). PhD thesis West Pomeranian University of Technology Szczecin.

  • 6. Sadr Ghayeni S.B. Beatson P.J. Schneider R.P. & Fane A.G. (1998). Water reclamation from municipal wastewater using combined microfiltration-reverse osmosis (MF-RO): Preliminary performance data and microbiological aspects of system operation. Desalination. 116 65–80. DOI: 10.1016/S0011-9164(98)00058-7.

  • 7. Kumar R. & Ismail A.F. (2015). Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology hydrophilicity and charge. J. Appl. Polym. Sci. 132 1–20. DOI: 10.1002/app.42042.

  • 8. Bonnélye V. Guey L. & Del Castillo J. (2008). UF/MF as RO pre-treatment: the real benefit. Desalination. 222 59–65 DOI: 10.1016/j.desal.2007.01.129.

  • 9. Ogunbiyi O.O. Miles N.J. & Hilal N. (2008). The effects of performance and cleaning cycles of new tubular ceramic microfiltration membrane fouled with a model yeast suspension. Desalination. 220 273–289. DOI: 10.1016/j.desal.2007.01.034.

  • 10. Ulbricht M. Ansorge W. Danielzik I. König M. & Schuster O. (2009). Fouling in microfiltration of wine: The influence of the membrane polymer on adsorption of poly-phenols and polysaccharides. Sep. Purif. Technol. 68 335–342 DOI: 10.1016/j.seppur.2009.06.004.

  • 11. Markardij A. Chen X.D. & Farid M.M. (1999). Microfiltration and ultrafiltration of milk: some aspects of fouling and cleaning. Food Bioprod. Proc. 77 107–113. DOI: 10.1205/096030899532394.

  • 12. Karasu K. Glennon N. Lawrence N.D. Stevens G.W. O’Connor J.O. Barber A.R. Yoshikawa S. & Kentish S.E. (2010). A comparison between ceramic and polymeric membrane systems for casein concentrate manufacture Int. J. Dairy Technol. 63 284–289. DOI: 10.1111/j.1471-0307.2010.00582.x.

  • 13. Schäfer A.I. Fane A.G. & Waite T.D. (Eds.). (2005). Nanofiltration: Principles and applications. Oxford UK: Elsevier Advanced Technology.

  • 14. Kroll S. Treccani L. Rezwan K. & Grathwohl G. (2010). Development and characterisation of functionalised ceramic microtubes for bacteria filtration. J. Mem. Sci. 365 447–455. DOI: 10.1016/j.memsci.2010.09.045.

  • 15. Gryta M. Markowska-Szczupak A. Bastrzyk J. & Tomczak W. (2013). The study of membrane distillation used for separation of fermenting glycerol solutions. J. Mem. Sci. 431 1–8. DOI: 10.1016/j.memsci.2012.12.032.

  • 16. Brandes C. Treccani L. Kroll S. & Rezwan K. (2014). Gel casting of free-shapeable ceramic membranes with adjustable pore size for ultra- and microfiltration. J. Am. Ceram. Soc. 97 1393–1401. DOI: 10.1111/jace.12877.

  • 17. Metsoviti M. Zeng An-P. Koutinas A.A. & Papanikolaou S. (2013). Enhanced 13-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J. Biotechnol. 163 408–418. DOI: 10.1016/j.jbiotec.2012.11.018.

  • 18. Ferreira T.F. Ribeiro R.R. Ribeiro C.M.S. Freire D.M.G. & Coelho M.A.Z. (2012). Evaluation of 13-Propanediol Production from Crude Glycerol by Citrobacter freundii ATCC 8090. Chem. Eng. Transac. 27 157–162. DOI: 10.3303/CET1227027.

  • 19. Barbirato F. Himmi El H. Conte T. & Bories A. (1998). 13-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries Ind. Crops Prod. 7 281–289. DOI: 10.1016/S0926-6690(97)00059-9.

  • 20. Colin T. Bories A. & Moulin G. (2000). Inhibition of Clostridium butyricum by 13-propanediol and diols during glycerol fermentation. Appl. Microbiol. Biotechnol. 54 201–205 DOI: 10.1007/s002530000365.

  • 21. Biebl H. (1991). Glycerol fermentation of 13-propanediol by Clostridium butyricum. Measurement of product inhibition by use a pH-auxostat. Appl. Microbiol. Biotechnol. 35 701–705 DOI: 10.1007/BF00169880.

  • 22. Zeng A.P. Ross A. Biebl H. Tag C. Günzel B. & Deckwer W.D. (1994). Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiellia pneumoniae in glycerol fermentation. Biotechnol. Bioeng. 44 902–911. DOI: 10.1002/bit.260440806.

  • 23. Bastrzyk J. & Gryta M. (2015). Separation of post-fermentation glycerol solution by nanofiltration membrane distillation system. Desalin. Water Treat. 53 319–329. DOI: 10.1080/19443994.2013.839402.

  • 24. Rodrigues C. Cavaco Morão A.I. de Pinho M.N. & Geraldes V. (2010). On the prediction of permeate flux for nanofiltration of concentrated aqueous solutions with thin-film composite polyamide membranes. J. Membr. Sci. 346 1–7. DOI: 10.1016/j.memsci.2009.08.023.

  • 25. Wang J.T. Chang S.C. Chen Y.C. & Luh K.T. (2000). Comparison of antimicrobial susceptibility of Citrobacter freundii isolates in two different time periods. J. Microbiol. Immunol. Infect. 33 258–62.

  • 26. Chaudhry W.N. Haq I.U. Andleeb S. & Qadri I. (2014). Characterization of a virulent bacteriophage LK1 specific for Citrobacter freundii isolated from sewage water. J. Basic Microbiol. 54 531–541. DOI: 10.1002/jobm.201200710.

  • 27. Chung J. Kang J.S. Jurng J.S. Jung J.H. & Kim B.Ch. (2015). Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform. Biosens. Bioelectron. 67 303–308. DOI:10.1016/j.bios.2014.08.039.

  • 28. Bastrzyk J. Gryta M. & Karakulski K (2014). Fouling of nanofiltration membranes used for separation of fermented glycerol solutions. Chem. Pap. 68 757–765. DOI: 10.2478/s11696-013-0520-8.

  • 29. Lebleua N. Roquesb Ch. Aimara P. & Causseranda Ch. (2009). Role of the cell-wall structure in the retention of bacteria by microfiltration membranes. J. Mem. Sci. 326 178–185. DOI: 10.1016/j.memsci.2008.09.049.

  • 30. Gryta M. (2007). Influence of polypropylene membrane surface porosity on the performance of membrane distillation process. J. Membr. Sci. 287 67–78. DOI:10.1016/j.memsci.2006.10.011.

  • 31. Hoek E.M.V. Bhattacharjee S. & Elimelech M. (2003). Effect of membrane surface roughness on colloid–membrane DLVO interactions. Langmuir 19 4836–4847. DOI: 10.1021/la027083c.

  • 32. Mohammad A.W. Basha R.K. & Leo C.P. (2010). Nanofiltration of glucose solution containing salts: Effects of membrane characteristics organics component and salts on retention. J. Food Eng. 97 510–518. DOI: 10.1016/j.jfoodeng.2009.11.010.

  • 33. Xu P. Drewes J.E. Kim T.U. Bellona C. & Amy G. (2006). Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications J. Membr. Sci. 279 165–175. DOI: 10.1016/j.memsci.2005.12.001.

  • 34. Schneider R. Hölz W. Wollbeck R. & Ripperger S. (1988). Membranes and modules for transmembrane distillation. J. Membr. Sci. 39 25–42. DOI: DOI:10.1016/S0376-7388(00)80992-8.

  • 35. Gryta M. Markowska-Szczupak A. Grzechulska-Damszel J. Bastrzyk J. & Waszak M. (2014). The study of glycerol-based fermentation and broth downstream by nanofiltration Pol. J. Chem. Technol. 16 117–122. DOI: 10.2478/pjct-2014-0081.

  • 36. Kosvintsev S. Cumming I. Holdich R. Lloyd D. & Starov V. (2004). Sieve mechanism of microfiltration separation. Coll. Surf. A: Physicochemical Engineering Aspects 230 167–182. DOI: 10.1016/j.colsurfa.2003.09.027.

  • 37. Lee D.J. Chen G.Y. Chang Y.R. & Lee K.R. (2012). Harvesting of chitosan coagulated Chlorella vulgaris using cyclic membrane filtration-cleaning. J. Taiwan Inst. Chem. Eng. 43 948–952. DOI: 10.1016/j.jtice.2012.07.002.

  • 38. Kim Y.J. Yun T. Lee S. Kim D. & Kim J. (2014). Accelerated testing for fouling of microfiltration membranes using model foulants. Desalination. 343 113–119 DOI: 10.1016/j.desal.2014.01.016.

  • 39. Pollice A. Brookes A. Jefferson B. & Judd S. (2005). Sub-critical flux fouling in membrane bioreactors a review of recent literature. Desalination 174 221–230. DOI: 0.1016/j.desal.2004.09.012.

Search
Journal information
Impact Factor


IMPACT FACTOR 2018: 0,975
5-year IMPACT FACTOR: 0,878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 303 169 5
PDF Downloads 104 73 2