Open Access

Studies of polypropylene membrane fouling during microfiltration of broth with Citrobacter freundii bacteria


Cite

1. Cui, Z.F. & Muralidhara, H.S. (Eds.). (2010). Membrane technology. A practical guide to membrane technology and applications in food and bioprocessing. Oxford, UK: Elsevier.Search in Google Scholar

2. Sadr Ghayeni, S.B., Beatson, P.J., Fane, A.J. & Schneider, R.P. (1999). Bacterial passage through microfiltration membranes in wastewater applications. J. Membr. Sci. 153, 71–82. DOI: 10.1016/S0376-7388(98)00251-8.10.1016/S0376-7388(98)00251-8Search in Google Scholar

3. Avci, F.G., Huccetogullari, D. & Azbar, N. (2014). The effects of cell recycling on the production of 1,3-propanediol by Klebsiella pneumonia. Bioprocess Biosyst. Eng. 37, 513–519. DOI: 10.1007/s00449-013-1018-z.10.1007/s00449-013-1018-zSearch in Google Scholar

4. Noworyta, A., Trusek-Holownia, A., Mielczarski, S. & Kubasiewicz-Ponitka, M. (2006). An integrated pervaporation-biodegradation process of phenolic wastewater treatment. Desalination. 198, 191–197. DOI: 10.1016/j.desal.2006.01.025.10.1016/j.desal.2006.01.025Search in Google Scholar

5. Tomczak, W. (2014). Badania rozdzielania brzeczek fermentacyjnych technikami membranowymi (Studies of broths separation by membrane processes). PhD thesis, West Pomeranian University of Technology, Szczecin.Search in Google Scholar

6. Sadr Ghayeni, S.B., Beatson, P.J., Schneider, R.P. & Fane, A.G. (1998). Water reclamation from municipal wastewater using combined microfiltration-reverse osmosis (MF-RO): Preliminary performance data and microbiological aspects of system operation. Desalination. 116, 65–80. DOI: 10.1016/S0011-9164(98)00058-7.10.1016/S0011-9164(98)00058-7Search in Google Scholar

7. Kumar, R. & Ismail, A.F. (2015). Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge. J. Appl. Polym. Sci. 132, 1–20. DOI: 10.1002/app.42042.10.1002/app.42042Search in Google Scholar

8. Bonnélye, V., Guey, L. & Del Castillo, J. (2008). UF/MF as RO pre-treatment: the real benefit. Desalination. 222, 59–65, DOI: 10.1016/j.desal.2007.01.129.10.1016/j.desal.2007.01.129Search in Google Scholar

9. Ogunbiyi, O.O., Miles, N.J. & Hilal, N. (2008). The effects of performance and cleaning cycles of new tubular ceramic microfiltration membrane fouled with a model yeast suspension. Desalination. 220, 273–289. DOI: 10.1016/j.desal.2007.01.034.10.1016/j.desal.2007.01.034Search in Google Scholar

10. Ulbricht, M., Ansorge, W., Danielzik, I., König, M. & Schuster, O. (2009). Fouling in microfiltration of wine: The influence of the membrane polymer on adsorption of poly-phenols and polysaccharides. Sep. Purif. Technol. 68, 335–342, DOI: 10.1016/j.seppur.2009.06.004.10.1016/j.seppur.2009.06.004Search in Google Scholar

11. Markardij, A., Chen, X.D. & Farid, M.M. (1999). Microfiltration and ultrafiltration of milk: some aspects of fouling and cleaning. Food Bioprod. Proc. 77, 107–113. DOI: 10.1205/096030899532394.10.1205/096030899532394Search in Google Scholar

12. Karasu, K., Glennon, N., Lawrence, N.D., Stevens, G.W., O’Connor, J.O., Barber, A.R., Yoshikawa, S. & Kentish, S.E. (2010). A comparison between ceramic and polymeric membrane systems for casein concentrate manufacture, Int. J. Dairy Technol. 63, 284–289. DOI: 10.1111/j.1471-0307.2010.00582.x.10.1111/j.1471-0307.2010.00582.xSearch in Google Scholar

13. Schäfer, A.I., Fane, A.G. & Waite, T.D. (Eds.). (2005). Nanofiltration: Principles and applications. Oxford, UK: Elsevier Advanced Technology.Search in Google Scholar

14. Kroll, S., Treccani, L., Rezwan, K. & Grathwohl, G. (2010). Development and characterisation of functionalised ceramic microtubes for bacteria filtration. J. Mem. Sci. 365, 447–455. DOI: 10.1016/j.memsci.2010.09.045.10.1016/j.memsci.2010.09.045Search in Google Scholar

15. Gryta, M., Markowska-Szczupak, A., Bastrzyk, J. & Tomczak, W. (2013). The study of membrane distillation used for separation of fermenting glycerol solutions. J. Mem. Sci. 431, 1–8. DOI: 10.1016/j.memsci.2012.12.032.10.1016/j.memsci.2012.12.032Search in Google Scholar

16. Brandes, C., Treccani, L., Kroll, S. & Rezwan, K. (2014). Gel casting of free-shapeable ceramic membranes with adjustable pore size for ultra- and microfiltration. J. Am. Ceram. Soc. 97, 1393–1401. DOI: 10.1111/jace.12877.10.1111/jace.12877Search in Google Scholar

17. Metsoviti, M., Zeng, An-P., Koutinas, A.A. & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J. Biotechnol. 163, 408–418. DOI: 10.1016/j.jbiotec.2012.11.018.10.1016/j.jbiotec.2012.11.018Search in Google Scholar

18. Ferreira, T.F., Ribeiro, R.R., Ribeiro, C.M.S., Freire, D.M.G. & Coelho, M.A.Z. (2012). Evaluation of 1,3-Propanediol Production from Crude Glycerol by Citrobacter freundii ATCC 8090. Chem. Eng. Transac. 27, 157–162. DOI: 10.3303/CET1227027.Search in Google Scholar

19. Barbirato, F., Himmi, El H., Conte, T. & Bories, A. (1998). 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries, Ind. Crops Prod. 7, 281–289. DOI: 10.1016/S0926-6690(97)00059-9.10.1016/S0926-6690(97)00059-9Search in Google Scholar

20. Colin, T. Bories, A. & Moulin, G. (2000). Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl. Microbiol. Biotechnol. 54, 201–205, DOI: 10.1007/s002530000365.10.1007/s00253000036510968633Search in Google Scholar

21. Biebl, H. (1991). Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use a pH-auxostat. Appl. Microbiol. Biotechnol. 35, 701–705, DOI: 10.1007/BF00169880.10.1007/BF00169880Search in Google Scholar

22. Zeng, A.P., Ross, A., Biebl, H., Tag, C., Günzel, B. & Deckwer, W.D. (1994). Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiellia pneumoniae in glycerol fermentation. Biotechnol. Bioeng. 44, 902–911. DOI: 10.1002/bit.260440806.10.1002/bit.26044080618618908Search in Google Scholar

23. Bastrzyk, J. & Gryta, M. (2015). Separation of post-fermentation glycerol solution by nanofiltration membrane distillation system. Desalin. Water Treat. 53, 319–329. DOI: 10.1080/19443994.2013.839402.10.1080/19443994.2013.839402Search in Google Scholar

24. Rodrigues, C., Cavaco Morão, A.I., de Pinho, M.N. & Geraldes, V. (2010). On the prediction of permeate flux for nanofiltration of concentrated aqueous solutions with thin-film composite polyamide membranes. J. Membr. Sci. 346, 1–7. DOI: 10.1016/j.memsci.2009.08.023.10.1016/j.memsci.2009.08.023Search in Google Scholar

25. Wang, J.T., Chang, S.C., Chen, Y.C. & Luh, K.T. (2000). Comparison of antimicrobial susceptibility of Citrobacter freundii isolates in two different time periods. J. Microbiol. Immunol. Infect. 33, 258–62.Search in Google Scholar

26. Chaudhry, W.N., Haq, I.U., Andleeb, S. & Qadri, I. (2014). Characterization of a virulent bacteriophage LK1 specific for Citrobacter freundii isolated from sewage water. J. Basic Microbiol. 54, 531–541. DOI: 10.1002/jobm.201200710.10.1002/jobm.201200710Search in Google Scholar

27. Chung, J., Kang, J.S., Jurng, J.S., Jung, J.H. & Kim, B.Ch. (2015). Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform. Biosens. Bioelectron. 67, 303–308. DOI:10.1016/j.bios.2014.08.039.10.1016/j.bios.2014.08.039Search in Google Scholar

28. Bastrzyk, J., Gryta, M. & Karakulski, K, (2014). Fouling of nanofiltration membranes used for separation of fermented glycerol solutions. Chem. Pap. 68, 757–765. DOI: 10.2478/s11696-013-0520-8.10.2478/s11696-013-0520-8Search in Google Scholar

29. Lebleua, N., Roquesb, Ch., Aimara, P. & Causseranda, Ch. (2009). Role of the cell-wall structure in the retention of bacteria by microfiltration membranes. J. Mem. Sci. 326, 178–185. DOI: 10.1016/j.memsci.2008.09.049.10.1016/j.memsci.2008.09.049Search in Google Scholar

30. Gryta, M. (2007). Influence of polypropylene membrane surface porosity on the performance of membrane distillation process. J. Membr. Sci. 287, 67–78. DOI:10.1016/j.memsci.2006.10.011.10.1016/j.memsci.2006.10.011Search in Google Scholar

31. Hoek, E.M.V., Bhattacharjee, S. & Elimelech, M. (2003). Effect of membrane surface roughness on colloid–membrane DLVO interactions. Langmuir 19, 4836–4847. DOI: 10.1021/la027083c.10.1021/la027083cSearch in Google Scholar

32. Mohammad, A.W., Basha, R.K. & Leo, C.P. (2010). Nanofiltration of glucose solution containing salts: Effects of membrane characteristics, organics component and salts on retention. J. Food Eng. 97, 510–518. DOI: 10.1016/j.jfoodeng.2009.11.010.10.1016/j.jfoodeng.2009.11.010Search in Google Scholar

33. Xu, P., Drewes, J.E., Kim, T.U., Bellona, C. & Amy, G. (2006). Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications, J. Membr. Sci. 279, 165–175. DOI: 10.1016/j.memsci.2005.12.001.10.1016/j.memsci.2005.12.001Search in Google Scholar

34. Schneider, R., Hölz, W., Wollbeck, R. & Ripperger, S. (1988). Membranes and modules for transmembrane distillation. J. Membr. Sci. 39, 25–42. DOI: DOI:10.1016/S0376-7388(00)80992-8.10.1016/S0376-7388(00)80992-8Search in Google Scholar

35. Gryta, M., Markowska-Szczupak, A., Grzechulska-Damszel, J., Bastrzyk, J. & Waszak, M. (2014). The study of glycerol-based fermentation and broth downstream by nanofiltration, Pol. J. Chem. Technol. 16, 117–122. DOI: 10.2478/pjct-2014-0081.10.2478/pjct-2014-0081Search in Google Scholar

36. Kosvintsev, S., Cumming, I., Holdich, R., Lloyd, D. & Starov, V. (2004). Sieve mechanism of microfiltration separation. Coll. Surf., A: Physicochemical Engineering Aspects, 230, 167–182. DOI: 10.1016/j.colsurfa.2003.09.027.10.1016/j.colsurfa.2003.09.027Search in Google Scholar

37. Lee, D.J., Chen, G.Y., Chang, Y.R. & Lee, K.R. (2012). Harvesting of chitosan coagulated Chlorella vulgaris using cyclic membrane filtration-cleaning. J. Taiwan Inst. Chem. Eng. 43, 948–952. DOI: 10.1016/j.jtice.2012.07.002.10.1016/j.jtice.2012.07.002Search in Google Scholar

38. Kim, Y.J., Yun, T., Lee, S., Kim, D. & Kim, J. (2014). Accelerated testing for fouling of microfiltration membranes using model foulants. Desalination. 343, 113–119 DOI: 10.1016/j.desal.2014.01.016.10.1016/j.desal.2014.01.016Search in Google Scholar

39. Pollice, A., Brookes, A., Jefferson, B. & Judd, S. (2005). Sub-critical flux fouling in membrane bioreactors a review of recent literature. Desalination 174, 221–230. DOI: 0.1016/j.desal.2004.09.012.10.1016/j.desal.2004.09.012Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering