Influence of ECR-RF plasma modification on surface and thermal properties of polyester copolymer

Open access

Abstract

In this paper we report a study on influence of radio-frequency (RF) plasma induced with electron cyclotron resonance (ECR) on multiblock copolymer containing butylene terephthalate hard segments (PBT) and butylene dilinoleate (BDLA) soft segments. The changes in thermal properties were studied by DSC. The changes in wettability of PBT-BDLA surfaces were studied by water contact angle (WCA). We found that ECR-RF plasma surface treatment for 60 s led to decrease of WCA, while prolonged exposure of plasma led to increase of WCA after N2 and N2O2 treatment up to 70°–80°. The O2 reduced the WCA to 50°–56°. IR measurements confirmed that the N2O2 plasma led to formation of polar groups. SEM investigations showed that plasma treatment led to minor surfaces changes. Collectively, plasma treatment, especially O2, induced surface hydrophilicity what could be beneficial for increased cell adhesion in future biomedical applications of these materials.

1. Huang, Y., Tian, X., Yang, S., Fu, R.K.Y. & Chu, P.K. (2007). Optical and mechanical properties of alumina films fabricated on Kapton polymer by plasma immersion ion implantation and deposition using different biases. Appl. Surf. Sci. 253, 9483–9488. DOI: 10.1016/j.apsusc.2007.06.011.

2. Singh, N.L., Qureshi, A., Rakshit, A.K., Mukherjee, S., Tripathi, A. & Avasthi, D.K. (2007). Surface modification of polymeric blends by nitrogen plasma immersion ion implantation. Surf. Coat. Technol., 201, 8278–8281, DOI: 10.1016/j.surfcoat.2006.10.059.

3. Liu, X., Fu R.K.Y., Ding, Ch. & Chu, P.K. (2007). Hydrogen plasma surface activation of silicon for biomedical applications. Biomolec. Engine., 24, 113–117. DOI: 10.1016/j.bioeng.2006.05.006.

4. Maitz, M.F., Poon, R.W.Y., Liu, X.Y., Pham, M.T., Chu, P.K. (2005). Bioactivity of titanium following sodium plasma immersion ion implantation and deposition. Biomaterials 26, 5465–5473. DOI: 10.1016/j.biomaterials.2005.02.006

5. Gancarz, I., Bryjak, J., Bryjak, M., Tylus, W. & Poźniak, G. (2006). Poly(phenylene oxide) films modified with allylamine plasma as a support for invertase immobilization. Eur. Polym. J. 42, 2430–2440. DOI: DOI:10.1016/j.eurpolymj.2006.07.008.

6. Wang, X., Tian, Y., Wang, Z. & Tao, Y. (2010). A novel hydrophilic modification of PTFE membranes using in situ deposited PANI. J. Macromol. Sci. Phys. 50, 172–178. DOI: 10.1080/00222341003648805.

7. Vladkova, T. (2007). Surface engineering for non-toxic biofouling control (review). J. Univ. Chem. Technol. Metall. 42, 239–256.

8. Dung Tran, T., Mori, S. & Suzuki, M. (2007), Plasma modification of polyacrylonitrile ultrafiltration membrane, Thin Solid Films, 515, 4148–4152. DOI: 10.1016/j.tsf.2006.02.045.

9. Ryu, G.H., Won-Sun, Y., Hye-Won, R., Lee, I.S., Kim, J.K., Lee, G.H., Lee, D.H., Park, B.J., Lee, M.S., Park, J.C. (2005). Plasma surface modification of poly (D,L-lactic-co-glycolic acid) (65/35) film for tissue engineering. Surface & Coatings Technology, 193, 60–64. DOI: 10.1016/j.surfcoat.2004.07.062.

10. Han, D.K., Ahn, K.D., Ju, Y.M. & Ahn, S.. Preparation method of biodegradable porous polymer scaffolds having an improved cell compatibility for tissue engineering, US Patent 6861087, March 2005.

11. Aroca, A.S., Pradasa, M.M. & Gómez Ribelles, M.. (2007). Plasma induced polymerization of hydrophilic coatings onto macroporous hydrophobic scaffolds, Polymer. 48, 2071–2078. DOI: 10.1016/j.polymer.2007.02.017.

12. Stoffels, E., Kieft, I.E. & Sladek, R.E.J. (2003). Superficial treatment of mammalian cells using plasma needle. J. Phys. D. Appl. Phys. 36, 2908–2913. DOI: 10.1088/0022-3727/36/23/007.

13. El Fray, M. & Slonecki, J. (1996). Multiblock copolymers consisting of polyester and polyaliphatic blocks, Die Angewandte Makromoleulare Chemie, 234, 103–117. DOI: 10.1002/apmc.1996.052340110.

14. Prowans, P., El Fray, M. & Slonecki, J. (2002). Biocompatibility studies of new multiblock poly(ester-ester)s composed of poly(butylene terephthalate) and dimerized fatty acid. Biomaterials 23, 2973–2978, DOI: 10.1016/S0142-9612(02)00026-1.

15. El Fray, M., Bartkowiak, A., Prowans, P. & Slonecki, J. (2000). Physical and mechanical behaviour of electron-beam irradiated and ethylene oxide sterilized multiblock polyester. J. Mater. Sci. Mater. Med. 11, 757–762.

16. Renke-Gluszko, M. & El Fray, M. (2004). The effect of simulated body fluid on mechanical properties of multiblock poly(aliphatic/aromatic-ester) copolymers. Biomaterials 25, 5191–5198. DOI: 10.1016/j.biomaterials.2003.12.021.

17. Oh, S.H. & Lee, J.H. (2013). Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomed. Mater. 8, 014101–014117. DOI: 10.1088/1748-6041/8/1/014101.

18. Lee, J.H., Kim, H.G., Khang, G.S., Lee, H.B. & Jhon, M.S. (1992). Characterization of wettability gradient surfaces prepared by corona discharge treatment. J. Colloid. Interface. Sci. 151, 563–570. DOI: 10.1016/0021-9797(92)90504-F.

19. Vesel, A., Junkar, I., Cvelbar, U., Kovac, J. & Mozetic, M. (2008), Surface modification of polyester by oxygen- and nitrogen-plasma treatment. Surf. Inter. Anal. 40, 1444–1453, DOI: 10.1002/sia.2923.

20. Siow, K.S., Britcher, L., Kumar, S. & Griesser, H.J., (2006), Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization – a review. Plasma Process. Polym. 3:392–418. DOI: 10.1002/ppap.200600021.

21. Cioffi, M.O.H., Voorwald, H.J.C. & Mota, R.P. (2003). Surface energy increase of oxygen-plasma-treated PET. Mater. Character. 50, 209–215, DOI: 10.1016/S1044-5803(03)00094-9.

22. Yang, M., Zhang, Z., Hahn, C., Laroche, G., King, M.W. & Guidoin, R. (1999). Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles. J. Biomed. Mater. Res. (Appl. Biomater). 48, 13–23, DOI: 10.1002/(SICI)1097-4636(1999)48:1<13::AID-JBM4>3.0.CO;2-4.

23. Xu, Y., Wu, X., Xie, X., Zhong, Y., Guidoin, R., Zhang, Z., Fu, Q. (2013). Synthesis of polycarbonate urethanes with functional poly(ethylene glycol) side chains intended for bioconjugates, Polymer 54, 5363–5373. DOI: 10.1016/j.polymer.2013.07.069.

24. Guidoin, R., Sigot, M., King, M. & Sigot-Luizar, M.F. (1992). Biocompatibility of the Vascugraft ®: evaluation of a novel polyester methane vascular substitute by an organotypic culture technique, Biomaterials. 13, 281–288. DOI: 10.1016/0142-9612(92)90051-O.

25. Camberlin, Y. & Pascault, J.P. (1984). Phase segregation kinetics in segmented linear polyurethanes: Relations between equilibrium time and chain mobility and between equilibrium degree of segregation and interaction parameter. J. Polym. Sci. Polym. Phys. 22, 1835–1844. DOI: 10.1002/pol.1984.180221011.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 185 185 8
PDF Downloads 65 65 4