Open Access

Influence of ECR-RF plasma modification on surface and thermal properties of polyester copolymer


Cite

1. Huang, Y., Tian, X., Yang, S., Fu, R.K.Y. & Chu, P.K. (2007). Optical and mechanical properties of alumina films fabricated on Kapton polymer by plasma immersion ion implantation and deposition using different biases. Appl. Surf. Sci. 253, 9483–9488. DOI: 10.1016/j.apsusc.2007.06.011.10.1016/j.apsusc.2007.06.011Search in Google Scholar

2. Singh, N.L., Qureshi, A., Rakshit, A.K., Mukherjee, S., Tripathi, A. & Avasthi, D.K. (2007). Surface modification of polymeric blends by nitrogen plasma immersion ion implantation. Surf. Coat. Technol., 201, 8278–8281, DOI: 10.1016/j.surfcoat.2006.10.059.10.1016/j.surfcoat.2006.10.059Search in Google Scholar

3. Liu, X., Fu R.K.Y., Ding, Ch. & Chu, P.K. (2007). Hydrogen plasma surface activation of silicon for biomedical applications. Biomolec. Engine., 24, 113–117. DOI: 10.1016/j.bioeng.2006.05.006.10.1016/j.bioeng.2006.05.00616891154Search in Google Scholar

4. Maitz, M.F., Poon, R.W.Y., Liu, X.Y., Pham, M.T., Chu, P.K. (2005). Bioactivity of titanium following sodium plasma immersion ion implantation and deposition. Biomaterials 26, 5465–5473. DOI: 10.1016/j.biomaterials.2005.02.00610.1016/j.biomaterials.2005.02.00615860203Search in Google Scholar

5. Gancarz, I., Bryjak, J., Bryjak, M., Tylus, W. & Poźniak, G. (2006). Poly(phenylene oxide) films modified with allylamine plasma as a support for invertase immobilization. Eur. Polym. J. 42, 2430–2440. DOI: DOI:10.1016/j.eurpolymj.2006.07.008.10.1016/j.eurpolymj.2006.07.008Search in Google Scholar

6. Wang, X., Tian, Y., Wang, Z. & Tao, Y. (2010). A novel hydrophilic modification of PTFE membranes using in situ deposited PANI. J. Macromol. Sci. Phys. 50, 172–178. DOI: 10.1080/00222341003648805.10.1080/00222341003648805Search in Google Scholar

7. Vladkova, T. (2007). Surface engineering for non-toxic biofouling control (review). J. Univ. Chem. Technol. Metall. 42, 239–256.Search in Google Scholar

8. Dung Tran, T., Mori, S. & Suzuki, M. (2007), Plasma modification of polyacrylonitrile ultrafiltration membrane, Thin Solid Films, 515, 4148–4152. DOI: 10.1016/j.tsf.2006.02.045.10.1016/j.tsf.2006.02.045Search in Google Scholar

9. Ryu, G.H., Won-Sun, Y., Hye-Won, R., Lee, I.S., Kim, J.K., Lee, G.H., Lee, D.H., Park, B.J., Lee, M.S., Park, J.C. (2005). Plasma surface modification of poly (D,L-lactic-co-glycolic acid) (65/35) film for tissue engineering. Surface & Coatings Technology, 193, 60–64. DOI: 10.1016/j.surfcoat.2004.07.062.10.1016/j.surfcoat.2004.07.062Search in Google Scholar

10. Han, D.K., Ahn, K.D., Ju, Y.M. & Ahn, S.. Preparation method of biodegradable porous polymer scaffolds having an improved cell compatibility for tissue engineering, US Patent 6861087, March 2005.Search in Google Scholar

11. Aroca, A.S., Pradasa, M.M. & Gómez Ribelles, M.. (2007). Plasma induced polymerization of hydrophilic coatings onto macroporous hydrophobic scaffolds, Polymer. 48, 2071–2078. DOI: 10.1016/j.polymer.2007.02.017.10.1016/j.polymer.2007.02.017Search in Google Scholar

12. Stoffels, E., Kieft, I.E. & Sladek, R.E.J. (2003). Superficial treatment of mammalian cells using plasma needle. J. Phys. D. Appl. Phys. 36, 2908–2913. DOI: 10.1088/0022-3727/36/23/007.10.1088/0022-3727/36/23/007Search in Google Scholar

13. El Fray, M. & Slonecki, J. (1996). Multiblock copolymers consisting of polyester and polyaliphatic blocks, Die Angewandte Makromoleulare Chemie, 234, 103–117. DOI: 10.1002/apmc.1996.052340110.10.1002/apmc.1996.052340110Search in Google Scholar

14. Prowans, P., El Fray, M. & Slonecki, J. (2002). Biocompatibility studies of new multiblock poly(ester-ester)s composed of poly(butylene terephthalate) and dimerized fatty acid. Biomaterials 23, 2973–2978, DOI: 10.1016/S0142-9612(02)00026-1.10.1016/S0142-9612(02)00026-1Search in Google Scholar

15. El Fray, M., Bartkowiak, A., Prowans, P. & Slonecki, J. (2000). Physical and mechanical behaviour of electron-beam irradiated and ethylene oxide sterilized multiblock polyester. J. Mater. Sci. Mater. Med. 11, 757–762.10.1023/A:1008936114611Search in Google Scholar

16. Renke-Gluszko, M. & El Fray, M. (2004). The effect of simulated body fluid on mechanical properties of multiblock poly(aliphatic/aromatic-ester) copolymers. Biomaterials 25, 5191–5198. DOI: 10.1016/j.biomaterials.2003.12.021.10.1016/j.biomaterials.2003.12.021Search in Google Scholar

17. Oh, S.H. & Lee, J.H. (2013). Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomed. Mater. 8, 014101–014117. DOI: 10.1088/1748-6041/8/1/014101.10.1088/1748-6041/8/1/014101Search in Google Scholar

18. Lee, J.H., Kim, H.G., Khang, G.S., Lee, H.B. & Jhon, M.S. (1992). Characterization of wettability gradient surfaces prepared by corona discharge treatment. J. Colloid. Interface. Sci. 151, 563–570. DOI: 10.1016/0021-9797(92)90504-F.10.1016/0021-9797(92)90504-FSearch in Google Scholar

19. Vesel, A., Junkar, I., Cvelbar, U., Kovac, J. & Mozetic, M. (2008), Surface modification of polyester by oxygen- and nitrogen-plasma treatment. Surf. Inter. Anal. 40, 1444–1453, DOI: 10.1002/sia.2923.10.1002/sia.2923Search in Google Scholar

20. Siow, K.S., Britcher, L., Kumar, S. & Griesser, H.J., (2006), Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization – a review. Plasma Process. Polym. 3:392–418. DOI: 10.1002/ppap.200600021.10.1002/ppap.200600021Search in Google Scholar

21. Cioffi, M.O.H., Voorwald, H.J.C. & Mota, R.P. (2003). Surface energy increase of oxygen-plasma-treated PET. Mater. Character. 50, 209–215, DOI: 10.1016/S1044-5803(03)00094-9.10.1016/S1044-5803(03)00094-9Search in Google Scholar

22. Yang, M., Zhang, Z., Hahn, C., Laroche, G., King, M.W. & Guidoin, R. (1999). Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles. J. Biomed. Mater. Res. (Appl. Biomater). 48, 13–23, DOI: 10.1002/(SICI)1097-4636(1999)48:1<13::AID-JBM4>3.0.CO;2-4.10.1002/(SICI)1097-4636(1999)48:1<13::AID-JBM4>3.0.CO;2-4Search in Google Scholar

23. Xu, Y., Wu, X., Xie, X., Zhong, Y., Guidoin, R., Zhang, Z., Fu, Q. (2013). Synthesis of polycarbonate urethanes with functional poly(ethylene glycol) side chains intended for bioconjugates, Polymer 54, 5363–5373. DOI: 10.1016/j.polymer.2013.07.069.10.1016/j.polymer.2013.07.069Search in Google Scholar

24. Guidoin, R., Sigot, M., King, M. & Sigot-Luizar, M.F. (1992). Biocompatibility of the Vascugraft ®: evaluation of a novel polyester methane vascular substitute by an organotypic culture technique, Biomaterials. 13, 281–288. DOI: 10.1016/0142-9612(92)90051-O.10.1016/0142-9612(92)90051-OSearch in Google Scholar

25. Camberlin, Y. & Pascault, J.P. (1984). Phase segregation kinetics in segmented linear polyurethanes: Relations between equilibrium time and chain mobility and between equilibrium degree of segregation and interaction parameter. J. Polym. Sci. Polym. Phys. 22, 1835–1844. DOI: 10.1002/pol.1984.180221011.10.1002/pol.1984.180221011Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering