Artificial neural network to predict the natural convection from vertical and inclined arrays of horizontal cylinders

Open access


The main focus of the present study is to utilize the artificial neural network (ANN) in predicting the natural convection from horizontal isothermal cylinders arranged in vertical and inclined arrays. The effects of the vertical separation spacing to the cylinder diameter ratio (Py/d), horizontal separation spacing to the cylinder diameter ratio (Px/d) and Rayleigh number (Ra) variation on the average heat transfer from the arrays are considered via this prediction. The training data for optimizing the ANN structure is based on available experimental data. The Levenberg-Marquardt back propagation algorithm is used for ANN training. The proposed ANN is developed using MATLAB functions. For the best ANN structure obtained in this investigation, the mean relative errors of 0.027% and 0.482% were reached for the training and test data, respectively. The results show that the predicted values are very close to the experimental ones.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Kuehn T.H. & Goldstein R.J. (1980).Numerical solution to the Navier-Stokes equations forlaminar natural convection about a horizontal isothermal circular cylinder.Int. J. Heat MassTransfer. 23(7) 971-979.DOI:10.1016/0017-9310(80)90071-X.

  • 2. Wang P. Kahawita R. & Nguyen T.H. (1990).Numerical computation of the natural convection flow about a horizontal cylinder using splines. Num. Heat Transfer. 17(2) 191-215. DOI:10.1080/10407789008944739.

  • 3. Saitoh T. Sajiki T. & Maruhara K. (1993). Bench mark solutions to natural convection heat transfer problem around a horizontal circular cylinder.Int. J. Heat Mass Transfer; 36(5) 1251-1259. DOI: 10.1016/S0017-9310(05)80094-8.

  • 4. Corcione M. (2005). Correlating equations for free convection heat transfer from horizontal isothermal cylinders set in a vertical array.Int. J. Heat Mass Transfer. 48(17) 3660-3673. DOI:10.1016/j.ijheatmasstransfer.2005.01.010.

  • 5. Eckert E.R.G. & Soehngen E.E. (1948).Studies on heat transfer in laminar free convection with the Zehnder-Mach interferometer.AF Technical Report 5747 USAF Air Material Command Wright-Paterson Air Force Base Ohio.

  • 6. Tokura I. Saito H. Kisinami K. & Muramoto K. (1983). An experimental study of free convection heat transfer from a horizontal cylinder in a vertical array set in free space between parallel walls. J. heat Transfer. 105 102-107.

  • 7. Marsters G.F. (1972).Array of heated horizontal cylinders in natural convection. Int. J. Heat Mass Transfer. 15(5) 921-933. DOI:10.1016/0017-9310(72)90231-1.

  • 8. Lieberman J. & Gebhart B. (1969).Interaction in natural convection from an array of heated elements experimental. Int.J. Heat Mass Transfer. 12(11) 1385-1396. DOI: 10.1016/0017- 9310(69)90023-4.

  • 9. Rezvantalab H. Ghazian O. Yousefi T. & Ashjaee M. (2011). Effect of flow diverters on free convection heat transfer from a pair of vertical arrays of isothermal cylinders. Experimental Thermal and Fluid Science. 35(7) 1398-1408. DOI: 10.1016/j.expthermflusci.2011.05.008.

  • 10. Ashjaee M. & Yousefi T. (2007). Experimental Study of Free Convection Heat Transfer from Horizontal Isothermal Cylinders Arranged in Vertical and Inclined Arrays. J. Heat TransferEngineering.28(5)460-471.DOI: 10.1080/01457630601165822.

  • 11. Sozen A. & Arcaklioglu E. (2007).Exergy analysis of an ejector-absorption heat transformer using artificial neural network approach. Appl. Therm. Eng. 27(2-3) 481-491.DOI: 10.1016/j.applthermaleng.2006.06.012.

  • 12. Deng S. & Hwang Y. (2006).Applying neural networks to the solution of forward and inverse heat conduction problems. Int. J. of Heat and Mass Transfer.49(25-26) 4732-4750. DOI: 10.1016/j.ijheatmasstransfer.2006.06.009.

  • 13. Zdaniuk G.J. Chamra L.M. & Walters D.K. (2007).Correlating heat transfer and friction in helically-finned tubes using artificial neural networks.Int. J. of Heat and Mass Transfer 50(23- 24) 4713-4723. DOI: 10.1016/j.ijheatmasstransfer.2007.03.043.

  • 14. Scalabrin G. & Piazza L. (2003).Analysis of forced convection heat transfer to supercritical carbon dioxide inside tubes using neural networks. Int. J. of Heat and Mass Transfer 46(7) 1139-1154.DOI: 10.1016/S0017-9310(02)00382-4.

  • 15. Diaz G. Sen M. Yang K.T. & McClain R.L. (2001). Dynamic prediction and control of heat exchangers using artificial neural networks. Int. J. of Heat and Mass Transfer.44(9) 1671-1679. DOI: 10.1016/S0017-9310(00)00228-3.

  • 16. Chen J. Wang Kuan-Po. & Liang M-Tsai. (2005).Predictions of heat transfer coefficients of supercritical carbon dioxide using the overlapped type of local neural network. Int.J. of Heat and Mass Transfer.48(12) 2483-2492. DOI:10.1016/j. ijheatmasstransfer.2004.12.040.

  • 17. Hernández J.A. Romero R.J. Juárez D. Escobar R.F. & Siqueiros J. (2009). A neural network approach and thermodynamic model of waste energy recovery in a heat transformer in a water purification process.Desalination. 243(1- 3) 273-285. DOI: 10.1016/j.desal.2008.05.015.

  • 18. Hauf W. & Grigull U. (1970). Optical methods in heat transfer. Advances in Heat Transfer. 6 Academic Press New York 133-366.

  • 19. Eckert E.E.R.G. & Goldstein R.J. (1972). Measurements in Heat Transfer.second edition McGraw-Hill New York 241-293.

  • 20. Karami A. Rezaei E. Shahhosseni M. & Aghakhani M. (2012). Fuzzy logic to predict the heat transfer in an air cooler equipped with different tube inserts. Int. J. of Therm. Sci. 53 141-147. DOI: 10.1016/j.ijthermalsci.2011.10.016.

  • 21. Rezaei E. Karami A.Yousefi T. & Mahmoudinezhad S. (2012).Modeling the free convection heat transfer in a partitioned cavity using ANFIS Int. Communications in Heatand Mass Transfer. 39(3) 470-475.DOI: 10.1016/j.icheatmasstransfer. 2011.12.006.

  • 22. Minai A.A. & Williams R.D. (1990). Acceleration of back propagation through learning rate and momentum adaptation. International joint conference on neural networks; 1 676-9.

  • 23. Neural Computing (1996). A technology handbook for professional II/ PLUS and neural works explorer. Pittsburgh: Neural Ware Inc Technical Publications Group.

  • 24. Haykin S.(1994). Neural networks: a comprehensive foundation New York: Macmillan College Publishing Company; ISBN 0-02352761-7.

  • 25. Hammouda HB.Mhiri M. Gafsi Z. Besbes K. (2008). Neural-based models ofsemiconductor devices for HSPICE Simulation. Am. J. Appl.Sci. 5(4) 385-391.DOI: 10.3844/ ajassp.2008.385.391.

  • 26. Shirvany Y. Hayati M. Moradian R. (2008).Numerical solution of the nonlinear Schrodinger equationbyfeedforward neural networks.Communications in Nonlinear Science andNumerical Simulation. 13(10) 2132-2145. DOI: 10.1016/j. cnsns.2007.04.024.

  • 27. Gallant AR. & White H. (1992).On learning the derivatives of an unknown mappingwith multilayer feed forward networks. Elsevier Science.5 129-38.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 358 118 4
PDF Downloads 157 90 5