Open Access

Artificial neural network to predict the natural convection from vertical and inclined arrays of horizontal cylinders


Cite

1. Kuehn, T.H. & Goldstein, R.J. (1980).Numerical solution to the Navier-Stokes equations forlaminar natural convection about a horizontal isothermal circular cylinder.Int. J. Heat MassTransfer. 23(7), 971-979.DOI:10.1016/0017-9310(80)90071-X.10.1016/0017-9310(80)90071-XSearch in Google Scholar

2. Wang, P., Kahawita, R. & Nguyen, T.H. (1990).Numerical computation of the natural convection flow about a horizontal cylinder using splines. Num. Heat Transfer. 17(2), 191-215. DOI:10.1080/10407789008944739.10.1080/10407789008944739Search in Google Scholar

3. Saitoh, T., Sajiki, T. & Maruhara, K. (1993). Bench mark solutions to natural convection heat transfer problem around a horizontal circular cylinder.Int. J. Heat Mass Transfer; 36(5), 1251-1259. DOI: 10.1016/S0017-9310(05)80094-8.10.1016/S0017-9310(05)80094-8Search in Google Scholar

4. Corcione, M. (2005). Correlating equations for free convection heat transfer from horizontal isothermal cylinders set in a vertical array.Int. J. Heat Mass Transfer. 48(17), 3660-3673. DOI:10.1016/j.ijheatmasstransfer.2005.01.010.10.1016/j.ijheatmasstransfer.2005.01.010Search in Google Scholar

5. Eckert, E.R.G. & Soehngen, E.E. (1948).Studies on heat transfer in laminar free convection with the Zehnder-Mach interferometer.AF Technical Report, 5747, USAF Air Material Command, Wright-Paterson Air Force Base, Ohio.Search in Google Scholar

6. Tokura, I., Saito, H., Kisinami, K. & Muramoto, K. (1983). An experimental study of free convection heat transfer from a horizontal cylinder in a vertical array set in free space between parallel walls. J. heat Transfer. 105, 102-107.10.1115/1.3245526Search in Google Scholar

7. Marsters, G.F. (1972).Array of heated horizontal cylinders in natural convection. Int. J. Heat Mass Transfer. 15(5), 921-933. DOI:10.1016/0017-9310(72)90231-1.10.1016/0017-9310(72)90231-1Search in Google Scholar

8. Lieberman, J. & Gebhart, B. (1969).Interaction in natural convection from an array of heated elements, experimental. Int.J. Heat Mass Transfer. 12(11), 1385-1396. DOI: 10.1016/0017- 9310(69)90023-4.Search in Google Scholar

9. Rezvantalab, H., Ghazian, O., Yousefi, T. & Ashjaee, M. (2011). Effect of flow diverters on free convection heat transfer from a pair of vertical arrays of isothermal cylinders. Experimental Thermal and Fluid Science. 35(7), 1398-1408. DOI: 10.1016/j.expthermflusci.2011.05.008.10.1016/j.expthermflusci.2011.05.008Search in Google Scholar

10. Ashjaee, M. & Yousefi, T. (2007). Experimental Study of Free Convection Heat Transfer from Horizontal Isothermal Cylinders Arranged in Vertical and Inclined Arrays. J. Heat TransferEngineering.28(5),460-471.DOI: 10.1080/01457630601165822.10.1080/01457630601165822Search in Google Scholar

11. Sozen, A. & Arcaklioglu, E. (2007).Exergy analysis of an ejector-absorption heat transformer using artificial neural network approach. Appl. Therm. Eng. 27(2-3), 481-491.DOI: 10.1016/j.applthermaleng.2006.06.012.10.1016/j.applthermaleng.2006.06.012Search in Google Scholar

12. Deng, S. & Hwang, Y. (2006).Applying neural networks to the solution of forward and inverse heat conduction problems. Int. J. of Heat and Mass Transfer.49(25-26), 4732-4750. DOI: 10.1016/j.ijheatmasstransfer.2006.06.009.10.1016/j.ijheatmasstransfer.2006.06.009Search in Google Scholar

13. Zdaniuk, G.J., Chamra, L.M. & Walters, D.K. (2007).Correlating heat transfer and friction in helically-finned tubes using artificial neural networks.Int. J. of Heat and Mass Transfer 50(23- 24), 4713-4723. DOI: 10.1016/j.ijheatmasstransfer.2007.03.043.10.1016/j.ijheatmasstransfer.2007.03.043Search in Google Scholar

14. Scalabrin, G. & Piazza, L. (2003).Analysis of forced convection heat transfer to supercritical carbon dioxide inside tubes using neural networks. Int. J. of Heat and Mass Transfer 46(7), 1139-1154.DOI: 10.1016/S0017-9310(02)00382-4.10.1016/S0017-9310(02)00382-4Search in Google Scholar

15. Diaz, G., Sen, M., Yang, K.T. & McClain, R.L. (2001). Dynamic prediction and control of heat exchangers using artificial neural networks. Int. J. of Heat and Mass Transfer.44(9), 1671-1679. DOI: 10.1016/S0017-9310(00)00228-3.10.1016/S0017-9310(00)00228-3Search in Google Scholar

16. Chen, J., Wang, Kuan-Po. & Liang, M-Tsai. (2005).Predictions of heat transfer coefficients of supercritical carbon dioxide using the overlapped type of local neural network. Int.J. of Heat and Mass Transfer.48(12), 2483-2492. DOI:10.1016/j. ijheatmasstransfer.2004.12.040.Search in Google Scholar

17. Hernández, J.A., Romero, R.J., Juárez, D., Escobar, R.F. & Siqueiros, J. (2009). A neural network approach and thermodynamic model of waste energy recovery in a heat transformer in a water purification process.Desalination. 243(1- 3), 273-285. DOI: 10.1016/j.desal.2008.05.015.10.1016/j.desal.2008.05.015Search in Google Scholar

18. Hauf, W. & Grigull, U. (1970). Optical methods in heat transfer. Advances in Heat Transfer. 6, Academic Press, New York, 133-366.10.1016/S0065-2717(08)70151-5Search in Google Scholar

19. Eckert, E.E.R.G. & Goldstein, R.J. (1972). Measurements in Heat Transfer.second edition, McGraw-Hill, New York, 241-293.Search in Google Scholar

20. Karami, A., Rezaei, E., Shahhosseni, M. & Aghakhani, M. (2012). Fuzzy logic to predict the heat transfer in an air cooler equipped with different tube inserts. Int. J. of Therm. Sci. 53, 141-147. DOI: 10.1016/j.ijthermalsci.2011.10.016.10.1016/j.ijthermalsci.2011.10.016Search in Google Scholar

21. Rezaei, E., Karami, A.,Yousefi, T. & Mahmoudinezhad, S. (2012).Modeling the free convection heat transfer in a partitioned cavity using ANFIS, Int. Communications in Heatand Mass Transfer. 39(3), 470-475.DOI: 10.1016/j.icheatmasstransfer. 2011.12.006.Search in Google Scholar

22. Minai, A.A. & Williams R.D. (1990). Acceleration of back propagation through learning rate and momentum adaptation. International joint conference on neural networks; 1, 676-9.Search in Google Scholar

23. Neural Computing, (1996). A technology handbook for professional II/ PLUS and neural works explorer,. Pittsburgh: Neural Ware Inc, Technical Publications Group.Search in Google Scholar

24. Haykin, S.(1994). Neural networks: a comprehensive foundation, New York: Macmillan College Publishing Company; ISBN 0-02352761-7.Search in Google Scholar

25. Hammouda, HB,.Mhiri, M., Gafsi, Z., Besbes, K. (2008). Neural-based models ofsemiconductor devices for HSPICE Simulation. Am. J. Appl.Sci. 5(4), 385-391.DOI: 10.3844/ ajassp.2008.385.391.10.3844/ajassp.2008.385.391Search in Google Scholar

26. Shirvany, Y., Hayati, M., Moradian, R. (2008).Numerical solution of the nonlinear Schrodinger equationbyfeedforward neural networks.Communications in Nonlinear Science andNumerical Simulation. 13(10), 2132-2145. DOI: 10.1016/j. cnsns.2007.04.024.Search in Google Scholar

27. Gallant, AR. & White, H. (1992).On learning the derivatives of an unknown mappingwith multilayer feed forward networks. Elsevier Science.5, 129-38.Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering