The simplex optimization for high porous carbons preparation

Open access

The simplex optimization for high porous carbons preparation

The microporous carbon materials were prepared by chemical activation of Polish coal with potassium hydroxide using the simplex design method for planning the experiments. The experimental parameters were varied to identify the optimum conditions. Coal can be an excellent starting material for the preparation of high porous carbons for natural gas storage. The porosity of the resultant carbons was characterized by nitrogen adsorption (-196°C). Methane adsorption was investigated in a volumetric laboratory installation at range pressures from 1 to 3.5 MPa (25°C).

The best results of methane storage capacity (557 cm3 · g-1) were obtained when using an impregnation ratio 3.41/1 KOH/precursor and temperature at 592°C, (SLANG = 2091 m2 · g-1). The parameters of the preparation of high porosity and high methane adsorption carbon were determined by a fast and simple method.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Lozano-Castello D. Alcaniz-Monge J. De la Casa-Lillo M.A. Cazorla-Amoros D. & Linares-Solano A. (2002). Advances in the study of methane storage in porous carbonaceous materials. Fuel 81 1777-1803. DOI: 10.1016/S0016-2361(02)00124-2.

  • Liu J. Zhou Y. Sun Y. Su W. & Zhou L. (2011). Methane storage in wet carbon of tailored pore sizes. Carbon 49 3731-3736. DOI: 10.1016/j.carbon.2011.05.005.

  • Lozano-Castello D. Cazorla-Amoros D. & Linares-Solano A. (2002). Powdered activated carbons and activated carbon fibers for methane storage: A camparative study. Energy Fuels 16 1321-1328. DOI: 10.1021/ef020084s.

  • Garcia Blanco A.A. Alexandre de Oliveira J.C. Lopez R. Moreno-Pirajan J.C. Giraldo L. Zgrablich G. & Sapag K. (2010). A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surf. A 357 74-83. DOI: 10.1016/j.colsurfa.2010.01.006.

  • Zhou Y. Wang Y. Chen H. & Zhou L. (2005). Methane storage in wet activated carbon: Studies on the charging/discharging process. Carbon 43 2007-2012. DOI: 10.1016/j.carbon.2005.03.017.

  • Rodriguez-Reinoso F. Nakagawa Y. Silvestre-Albero J. Juarez-Galan J.M. & Molina-Sabio M. (2008). Correlation of methane uptake with microporosity and surface area of chemically activated carbons. Microporous Mesoporous Mater. 115 603-608. DOI: 10.1016/j.micromeso.2008.03.002.

  • Almansa C. Molina-Sabio M. & Rodriguez-Reinoso F. (2004). Adsorption of methane into ZnCl2-activated carbon derived discs. Microporous Mesoporous Mater. 76 185-191. DOI: 10.1016/j.micromeso.2004.08.010.

  • Bagheri N. & Abdei J. (2011). Adsorption of methane on corn cobs based activated carbon. Chem Eng Res Des. Article in Press. DOI: 10.1016/j.cherd.2011.02.002.

  • Abdel-Nasser A. & El-Hendawy. (2003). Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 41 713-722. DOI: 10.1016/S0008-6223(03)00029-0.

  • Zhang T. Walawender P.W. & Fan L.T. (2010). Grain-based activated carbons for natural gas storage. Bioresour. Technol. 101 1983-1991. DOI: 10.1016/j.biortech.2009.10.046.

  • Feaver A. & Cao G. (2006). Activated carbon cryogels for low pressure methane storage. Carbon 44 590-593. DOI: 10.1016/j.carbon.2005.10.004.

  • Lozano-Castello D. Lillo-Rodenas M.A. Cazorla-Amoros D. & Linares-Solano A. (2001). Preparation of activated carbons from Spanish anthracite I. Activation by KOH. Carbon 39 741-749. DOI:PII: S0008-6223(00)00185-8.

  • Menon V.C. & Komarneni S. (1998). Porous adsorbents for vehicular natural gas storage. J. Porous Mater. 5 43-58.

  • Hsu L. & Teng H. (2000). Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Process. Technol. 64 155-166. DOI: PII: S0378-3820_00.00071-0.

  • Zhang H. Chen J. & Guo S. (2008). Preparation of natural gas adsorbents from high-sulfur petroleum coke. Fuel 87 304-311. DOI:10.1016/j.fuel.2007.05.002.

  • Dai X.D. Liu X.M. Qiao L. & Yan Z.F. (2008). Pilot Preparation of Activated Carbon for Natural Gas Storage. Energy Fuels 22 3420-3423.DOI:10.1021/ef800313f.

  • Guan C. Loo L.S. Wang K. & Yang C. (2011). Methane storage in carbon pellets prepared via a binderless method. Energy Convers. Manage. 52 1258-1262. DOI: 10.1016/j.enconman.2010.09.022.

  • Guan C. Su F. Zhao X.S. & Wang K. (2008). Methane storage in a template-synthesized carbon. Sep. Purif. Technol. 64 124-126. DOI:10.1016/j.seppur.2008.08.007.

  • Celzard A. & Fierro V. (2005). Preparing a suitable material designed for methane storage. Energy Fuels. 19 573-583. DOI: 10.1021/ef040045b.

  • Perrin A. Celzard A. Mareche J.F. & Furdin G. (2003). Methane storage within dry and wet active carbons: A comparative study. Energy Fuels 17 1283-1291. DOI: 10.1021/ef030067i.

  • Yeon S-H. Osswald S. Gogotsi Y. Singer J.P. Simmons J.M. Fischer J.E. Lillo-Rodenas M.A. & Linares-Solano A. (2009). Enhanced methane storage of chemically and physically activated carbide-derived carbon. J. Power Sources 191 560-567. DOI:10.1016/j.jpowsour.2009.02.019.

  • Perrin A. Celzad A. Albiniak A. Jasienko-Halat M. Mareche J.F. & Furdin G. (2005). NaOH activation of anthracites: effect of hydroxide content on pore textures and methane storage ability. Microporous Mesoporous Mater. 81 31-40. DOI:10.1016/j.micromeso.2005.01.015.

  • Lillo-Rodenas M.A. Lozano-Castello D. Cazorla-Amoros D. & Linares-Solano A. (2001). Preparation of activated carbons from Spanish anthracite II. Activation by NaOH. Carbon 39 751-759. PII: S0008-6223(00)00186-X.

  • Tay T. Ucar S. & Karagoz S. (2009). Preparation and characterization of activated carbon from waste biomass. J. Hazard. Mater. 165 481-485. DOI: 10.1016/j.jhazmat.2008.10.011.

  • Lozano-Castello D. Cazorla-Amoros D. Linares-Solano A. & Quinn D.F. (2002). Influence of pore size distribution on methane storage at relatively low pressure: preparation of activated carbon with optimum pore size. Carbon 40 989-1002. PII: S0008-6223(01)00235-4.

  • Qiu J. Li Y. Wang Y. Liang C. Wang T. & Wang D. (2003). A novel form of carbon micro-balls from coal. Carbon 41 767-772. DOI:10.1016/S0008-6223(02)00392-5.

  • Tuinstra F. & Koening J.L. (1970). Raman spectrum of graphite. J. Chem. Phys. 53 1126-1130.

  • Spendley W. Hext G.R. & Himsworth F.R. (1962). Sequential application of simplex designs in optimisation and evolutionary operation. Technometerics 4 441-461.

  • Gorskij W.G. & Brodskij W.Z. (1965). Simplex design method for planning the optimum experiments. Zawod. Lab. 31 831-836.

  • Veres M. Fule M. Toth S. Koos M. & Pocsik I. (2004). Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diamond Relat. Mater. 13 1412-1415. DOI: 10.1016/j.diamond.2004.01.041.

  • Shimodaira N. & Masui A. (2002). Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys. 92 902-909.

  • Kumar R. Tiwari R.S. & Srivastava O.N. (2011). Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil. Nanoscale Res. Lett. 92 1-6. DOI:10.1186/1556-276X-6-92.

  • Zhang Y. Tang Y. Lin L. & Zhang E. (2008). Microstructure transformation of carbon nanofibers during graphitization. Trans. Nonferrous Met. Soc. China 18 1094-1099.

  • Kierzek K. 2006. Activated carbon materials with potassium hydroxide. PhD Thesis. Wroclaw University of Technology.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 353 151 4
PDF Downloads 113 73 4