Cite

Lozano-Castello, D. Alcaniz-Monge, J. De la Casa-Lillo, M.A. Cazorla-Amoros, D. & Linares-Solano, A. (2002). Advances in the study of methane storage in porous carbonaceous materials. Fuel 81, 1777-1803. DOI: 10.1016/S0016-2361(02)00124-2.10.1016/S0016-2361(02)00124-2Search in Google Scholar

Liu, J., Zhou, Y., Sun, Y., Su, W. & Zhou, L. (2011). Methane storage in wet carbon of tailored pore sizes. Carbon 49, 3731-3736. DOI: 10.1016/j.carbon.2011.05.005.10.1016/j.carbon.2011.05.005Search in Google Scholar

Lozano-Castello, D., Cazorla-Amoros, D. & Linares-Solano, A. (2002). Powdered activated carbons and activated carbon fibers for methane storage: A camparative study. Energy Fuels 16, 1321-1328. DOI: 10.1021/ef020084s.10.1021/ef020084sSearch in Google Scholar

Garcia Blanco, A.A., Alexandre de Oliveira, J.C., Lopez, R., Moreno-Pirajan, J.C., Giraldo, L., Zgrablich, G. & Sapag, K. (2010). A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surf., A 357, 74-83. DOI: 10.1016/j.colsurfa.2010.01.006.10.1016/j.colsurfa.2010.01.006Search in Google Scholar

Zhou, Y., Wang, Y., Chen, H. & Zhou, L. (2005). Methane storage in wet activated carbon: Studies on the charging/discharging process. Carbon 43, 2007-2012. DOI: 10.1016/j.carbon.2005.03.017.10.1016/j.carbon.2005.03.017Search in Google Scholar

Rodriguez-Reinoso, F., Nakagawa, Y., Silvestre-Albero, J., Juarez-Galan, J.M. & Molina-Sabio, M. (2008). Correlation of methane uptake with microporosity and surface area of chemically activated carbons. Microporous Mesoporous Mater. 115, 603-608. DOI: 10.1016/j.micromeso.2008.03.002.10.1016/j.micromeso.2008.03.002Search in Google Scholar

Almansa, C., Molina-Sabio, M. & Rodriguez-Reinoso, F. (2004). Adsorption of methane into ZnCl2-activated carbon derived discs. Microporous Mesoporous Mater. 76, 185-191. DOI: 10.1016/j.micromeso.2004.08.010.10.1016/j.micromeso.2004.08.010Search in Google Scholar

Bagheri, N. & Abdei, J. (2011). Adsorption of methane on corn cobs based activated carbon. Chem Eng Res Des. Article in Press. DOI: 10.1016/j.cherd.2011.02.002.10.1016/j.cherd.2011.02.002Search in Google Scholar

Abdel-Nasser, A. & El-Hendawy. (2003). Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 41, 713-722. DOI: 10.1016/S0008-6223(03)00029-0.10.1016/S0008-6223(03)00029-0Search in Google Scholar

Zhang, T., Walawender, P.W. & Fan, L.T. (2010). Grain-based activated carbons for natural gas storage. Bioresour. Technol. 101, 1983-1991. DOI: 10.1016/j.biortech.2009.10.046.10.1016/j.biortech.2009.10.04619945864Search in Google Scholar

Feaver, A. & Cao, G. (2006). Activated carbon cryogels for low pressure methane storage. Carbon 44, 590-593. DOI: 10.1016/j.carbon.2005.10.004.10.1016/j.carbon.2005.10.004Search in Google Scholar

Lozano-Castello, D., Lillo-Rodenas, M.A. Cazorla-Amoros, D. & Linares-Solano, A. (2001). Preparation of activated carbons from Spanish anthracite I. Activation by KOH. Carbon 39, 741-749. DOI:PII: S0008-6223(00)00185-8.10.1016/S0008-6223(00)00185-8Search in Google Scholar

Menon, V.C. & Komarneni, S. (1998). Porous adsorbents for vehicular natural gas storage. J. Porous Mater. 5, 43-58.10.1023/A:1009673830619Search in Google Scholar

Hsu, L. & Teng, H. (2000). Influence of different chemical reagents on the preparation of activated carbons from bituminous coal. Fuel Process. Technol. 64, 155-166. DOI: PII: S0378-3820_00.00071-0.10.1016/S0378-3820(00)00071-0Search in Google Scholar

Zhang, H., Chen, J. & Guo, S. (2008). Preparation of natural gas adsorbents from high-sulfur petroleum coke. Fuel 87, 304-311. DOI:10.1016/j.fuel.2007.05.002.10.1016/j.fuel.2007.05.002Search in Google Scholar

Dai, X.D., Liu, X.M., Qiao, L. & Yan, Z.F. (2008). Pilot Preparation of Activated Carbon for Natural Gas Storage. Energy Fuels 22, 3420-3423.DOI:10.1021/ef800313f.10.1021/ef800313fSearch in Google Scholar

Guan, C., Loo, L.S., Wang, K. & Yang, C. (2011). Methane storage in carbon pellets prepared via a binderless method. Energy Convers. Manage. 52, 1258-1262. DOI: 10.1016/j.enconman.2010.09.022.10.1016/j.enconman.2010.09.022Search in Google Scholar

Guan, C., Su, F., Zhao, X.S. & Wang, K. (2008). Methane storage in a template-synthesized carbon. Sep. Purif. Technol. 64, 124-126. DOI:10.1016/j.seppur.2008.08.007.10.1016/j.seppur.2008.08.007Search in Google Scholar

Celzard, A. & Fierro, V. (2005). Preparing a suitable material designed for methane storage. Energy Fuels. 19, 573-583. DOI: 10.1021/ef040045b.10.1021/ef040045bSearch in Google Scholar

Perrin, A., Celzard, A., Mareche, J.F. & Furdin, G. (2003). Methane storage within dry and wet active carbons: A comparative study. Energy Fuels 17, 1283-1291. DOI: 10.1021/ef030067i.10.1021/ef030067iSearch in Google Scholar

Yeon, S-H., Osswald, S., Gogotsi, Y., Singer, J.P., Simmons, J.M., Fischer, J.E., Lillo-Rodenas M.A. & Linares-Solano A. (2009). Enhanced methane storage of chemically and physically activated carbide-derived carbon. J. Power Sources 191, 560-567. DOI:10.1016/j.jpowsour.2009.02.019.10.1016/j.jpowsour.2009.02.019Search in Google Scholar

Perrin, A., Celzad, A., Albiniak, A., Jasienko-Halat, M., Mareche, J.F. & Furdin, G. (2005). NaOH activation of anthracites: effect of hydroxide content on pore textures and methane storage ability. Microporous Mesoporous Mater. 81, 31-40. DOI:10.1016/j.micromeso.2005.01.015.10.1016/j.micromeso.2005.01.015Search in Google Scholar

Lillo-Rodenas, M.A., Lozano-Castello, D., Cazorla-Amoros, D. & Linares-Solano, A. (2001). Preparation of activated carbons from Spanish anthracite II. Activation by NaOH. Carbon 39, 751-759. PII: S0008-6223(00)00186-X.Search in Google Scholar

Tay, T., Ucar, S. & Karagoz, S. (2009). Preparation and characterization of activated carbon from waste biomass. J. Hazard. Mater., 165, 481-485. DOI: 10.1016/j.jhazmat.2008.10.011.10.1016/j.jhazmat.2008.10.011Search in Google Scholar

Lozano-Castello, D., Cazorla-Amoros, D., Linares-Solano, A. & Quinn, D.F. (2002). Influence of pore size distribution on methane storage at relatively low pressure: preparation of activated carbon with optimum pore size. Carbon 40, 989-1002. PII: S0008-6223(01)00235-4.10.1016/S0008-6223(01)00235-4Search in Google Scholar

Qiu, J., Li, Y., Wang, Y., Liang, C., Wang, T. & Wang, D. (2003). A novel form of carbon micro-balls from coal. Carbon 41, 767-772. DOI:10.1016/S0008-6223(02)00392-5.10.1016/S0008-6223(02)00392-5Search in Google Scholar

Tuinstra, F. & Koening, J.L. (1970). Raman spectrum of graphite. J. Chem. Phys. 53 1126-1130.10.1063/1.1674108Search in Google Scholar

Spendley, W., Hext, G.R. & Himsworth, F.R. (1962). Sequential application of simplex designs in optimisation and evolutionary operation. Technometerics 4, 441-461.10.1080/00401706.1962.10490033Search in Google Scholar

Gorskij, W.G. & Brodskij, W.Z. (1965). Simplex design method for planning the optimum experiments. Zawod. Lab. 31, 831-836.Search in Google Scholar

Veres, M., Fule, M., Toth, S., Koos, M. & Pocsik, I. (2004). Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diamond Relat. Mater. 13, 1412-1415. DOI: 10.1016/j.diamond.2004.01.041.10.1016/j.diamond.2004.01.041Search in Google Scholar

Shimodaira, N. & Masui, A. (2002). Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys. 92, 902-909.10.1063/1.1487434Search in Google Scholar

Kumar, R., Tiwari, R.S. & Srivastava, O.N. (2011). Scalable synthesis of aligned carbon nanotubes bundles using green natural precursor: neem oil. Nanoscale Res. Lett. 92, 1-6. DOI:10.1186/1556-276X-6-92.10.1186/1556-276X-6-92321224221711585Search in Google Scholar

Zhang, Y., Tang, Y., Lin, L. & Zhang, E. (2008). Microstructure transformation of carbon nanofibers during graphitization. Trans. Nonferrous Met. Soc. China 18, 1094-1099.10.1016/S1003-6326(08)60187-9Search in Google Scholar

Kierzek, K. 2006. Activated carbon materials with potassium hydroxide. PhD Thesis. Wroclaw University of Technology.Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering