Catalytic synthesis of warfarin acetals by using different heteropolyacid catalysts

Open access

Catalytic synthesis of warfarin acetals by using different heteropolyacid catalysts

In this research, we report on the synthesis of warfarin acetals by using Preyssler's anion, [NaP5W30O110]-14 and heteropolyacids (HPAs) catalysts. This reaction was performed using methanol and ethanol at reflux temperature conditions. Under these conditions we have excellent yields and high selectivity. Preyssler heteropolyacid catalyst were easily recycled recovery and reused without the loss of its catalytic activities. The synthesis of warfarin acetals has been achieved using the catalytic amounts of green, inexpensive and eco-friendly Keggin types heteropolyacids. The products were obtained in high yields.

Robinson, A., Li, H.Y. & Feaster, J. (1996). The first practical asymmetric synthesis of R and S-Warfarin. Tetrahedron Lett., 37, 8321-8324. DOI:10.1016/0040-4039(96)01796-0.

Cravotto, G., Nano, G.M., Palmisano, G. & Tagliapietra, S. (2001). An asymmetric approach to coumarin anticoagulants via hetero-Diels-Alder cycloaddition. Tetrahedron: Asymmetry., 12, 707-709. DOI:10.1016/S0957-4166(01)00124-0.

Kennedy, R.O. & Thornes, R.D. (2003). Coumarins: Biology, Applications and Mode of Action, John Wiley and Sons, Chichester.

Zabradnik, M. (1992). The Production and Application of Fluorescent Brightening Agents, John Wiley and Sons, New York.

Maeda, M. (1994). Laser Dyes, Academic, New York.

Tsuchiya, Y., Hamashima, Y. & Sodeoka, M. (2006). A New Entry to Pd-H Chemistry: Catalytic Asymmetric Conjugate Reduction of Enones with EtOH and a Highly Enantioselective Synthesis of Warfarin. Org. Lett., 8, 4851-4854. DOI: 10.1021/ol0619157.

Wawzoek, S. (1951). in Heterocyclic Compounds, R. C. Eldrfield Ed., Wiley, NewYork, 2, 173-175.

Heravi, M., Zadsirjan, V., Bakhtiari, K., Oskooie, H.A. & Bamoharram, F.F. (2007). Green and reusable heteropolyacid catalyzed oxidation of benzylic, allylic and aliphatic alcohols to carbonyl compounds. Catalysis Communications. 8, 315-318. DOI:10.1016/j.catcom.2006.05.044.

Kozhevnikov, I.V. (2002). Heteropoly acids and related compounds as catalysts for fine chemical synthesis. Wiley & Sons, Chichester, England, 216.

Heravi, M.M., Derikvand, F. & Bamoharram, F.F. (2005). A catalytic method for synthesis of Biginelli-type 3,4-dihydropyrimidin-2 (1H)-one using 12-tungstophosphoric acid. J. Molecular Catalysis A: chemical. 242, 173-175. DOI:10.1016/j.molcata.2005.08.009.

Pope, M.T. (1983). Heteropoly and Isopoly Oxometalates, Springer, Berlin.

Okuhara, T., Mizuno, N. & Misono, M. (1996). Advances in Catalysis. Catalytic Chemistry of Heteropoly compounds. 41, 113-252.

Kozhevnikov, I.V. (1987). Advances in catalysis by heteropoly acids. Advances in catalysis by heteropoly acids. Russ. Chem. Rev. 56(9), 811-825. DOI: 10.1070/RC1987v056n09ABEH003304.

Izumi, Y., Urabe, K. & Onaka, M. (1992). Zeolite, Clay and Heteropoly Acid in Organic Reactions, Kodansha/VCH, Tokyo.

Kozhevnikov, I.V. (1998). Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. Chem. Rev. 98, 171-198. DOI: 10.1021/cr960400y.

Kozhevnikov, I.V. (2002). Catalysts for fine chemicals, in: Catalysis by Polyoxometalates, vol. 2, Wiley, Chichester.

Moffat, J.B. (2001). Metal-Oxygen Clusters: The Surface and Catalytic Properties of Heteropoly Oxometalates, Kluwer, New York.

Kozhevnikov, I.V. (2003). Friedel-Crafts acylation and related reactions catalysed by heteropoly acids. Applied Catalysis A: General. 256, 3-18. DOI:10.1016/S0926-860X(03)00406-X.

Bamoharram, F.F., Heravi, M.M., Roshani, M., Jahangir, M. & Gharib, A. (2007). Effective direct esterification of butanol by eco-friendly Preyssler catalyst, [NaP5W30O110]14-. J. Mol. Catal. 271, 126-130. DOI:10.1016/j.molcata.2007.02.034.

Bamoharram, F.F., Heravi, M.M., Roshani, M., Gharib, A. & Jahangir M. (2006). A catalytic method for synthesis of γ-butyrolactone, ε-caprolactone and 2-cumaranone in the presence of Preyssler's anion, [NaP5W30O110]14-, as a green and reusable catalyst. J. Mol. Catal. 252, 90-95. DOI:10.1016/j.molcata.2006.01.067.

Tsigdinos, G.A. & Hallada, C.J. (1968). Molybdovanado-phosphoric acids and their salts. I. Investigation of methods of preparation and characterization. Inorg. Chem., 7, 437-441. DOI: 10.1021/ic50061a009.

Mahha, Y., Atlamsani, A., Blais, J.C., Tessier, M., Brégeault, J.M. & Salles, L. (2005). Oligomerization of ε-caprolactone and δ-valerolactone using heteropolyacid initiators and vanadium or molybdenum complexes. J. Mol. Catal. A: Chemical., 234, 63-73. DOI:10.1016/j.molcata.2005.02.023.

Heravi, M.M., Bakhtiari, K., Benmorad, T., Bamoharram, F.F., Heravi, M.M., Oskooie, H.A., & Tehrani, H.M (2007). Nitration of Aromatic Compounds Catalyzed by Divanadium-Substituted Molybdophosphoric Acid, H5[PMo10V2O40]. Monatshefte für Chemie. 138, 5, 449-452. DOI: 10.1007/s00706-007-0593-6.

Pope, M.T. (1991). Molybdenum Oxygen Chemistry: Oxides, Oxo Complexes, and Polyoxoanions. In: Progress in Inorganic Chemistry. Ed: S.J. Lippard, John Wiley & Sons, New York, 181-255.

Romanelli, G., Autino, J.C., Baronetti, G. & Thomas, H. (2001). H. Efficient Deprotection of Phenol Methoxymethyl Ethers Using a Solid Acid Catalyst with Wells-Dawson Structure. Molecules. 6, 1006-1010. DOI:10.3390/61201006.

Alizadeh, M.H., Harmalker, S.P., Jeannin, Y., Martin-Frere, J. & Pope, M.T. (1985). A Heteropolyanion with Fivefold Molecular Symmetry That Contains a Nonlabile Encapsulated Sodium Ion. The Structure and Chemistry of [NaP5W30O110]14-. J. Am. Chem. Soc. 107, 2662-2669. DOI: 10.1021/ja00295a019.

Shanshan, Wu., Weihong, Zhang., Jum, Wang., Xiaoqian, Ren. (2008). Preyssler-Structured Tungstophosphoric Acid Catalyst on Functionalized Silica for Esterification of n-Butanol with Acetic Acid. Catal. Lett. 123, 276-281. DOI 10.1007/s10562-008-9419-3.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 122 63
PDF Downloads 25 25 13