LiOH.H2O as a catalyst for Knoevenagel and Gewald reactions

Open access

LiOH.H2O as a catalyst for Knoevenagel and Gewald reactions

Commercial available lithium hydroxide monohydrate LiOH.H2O was found to be a novel ‘dual activation’ catalyst for tandem cross Knoevenagel condensation between malononitrile or ethylcyanoacetate and aromatic aldehydes leading to an efficient and easy synthesis of the corresponding arylidenes at room temperature in a short reaction time. In the case of salicyaldehyde the reaction lead to the formation of 3-substituted coumarins. The high efficacy, cheapness and easy availability of LiOH.H2O prompted us to investigate its validity as a basic catalyst for Gewald reaction.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Jones G. (1967). Organic Reactions. (vol. 15 pp. 204-599). Edited by Adams R. John Wiley & Sons New York.

  • Lehnert W. (1970). Verbesserte variante der knoevenagel-kondensation mit TiCl4/THF/pyridin(I). alkyliden- und arylidenmalonester bei 0-25°C. Tetrahedron Lett. 11 (54) 4723-4724. DOI:10.1016/S0040-4039(00)89377-6.

  • Cabello J. A. Campelo J. M. Garcia A. Luna D. & Marinas J. M. (1984). Knoevenagel condensation in the heterogeneous phase using aluminum phosphate-aluminum oxide as a new catalyst. J. Org. Chem. 49 (26) 5195-5197. DOI: 10.1021/jo00200a036.

  • Rao P. S. & Venkataratnam R. V. (1991). Zinc chloride as a new catalyst for knoevenagel condensation. Tetrahedron Lett. 32 (41) 5821-5822. DOI:10.1016/S0040-4039(00)93564-0.

  • Rai U. S. Isloor A. M. Shetty P. Vijesh A. M. Prabhu N. Isloor S. Thiageeswaran M. & Fun H.-K. (2010). Novel chromeno[23-b]pyrimidine derivatives as potential anti-microbial agents. Eur. J. Med. Chem. 45 (6) 2695-2699. DOI:10.1016/j.ejmech.2010.02.040.

  • Sabitha G. Reddy B. V. S. Babu R. S. & Yadav J. S. (1998). LiCl Catalyzed Knoevenagel condensation: comparative study of conventional method vs microwave irradiation. Chem. Lett. 27 (8) 773-774 from

  • Li Y.-Q. (2000). Potassium phosphate as a catalyst for the knoevenagel condensation. J. Chem. Res. Synop. 524-525.

  • Bose D. S. & Narsaiah A. V. (2001). An efficient benzyltriethylammonium chloride catalysed preparation of electrophilic alkenes a practical synthesis of trimethoprim. J. Chem. Res. Synop. 36-38.

  • Wang S. Ren Z. Cao W. & Tong W. (2001). The Knoevenagel condensation of aromatic aldehydes with malononitrile or ethyl cyanoacetate in the presence of ctmab in water. Synth. Commun. 31 (5) 673-677. DOI: 10.1081/SCC-100103255.

  • Morrison D. W. Forbes D. C. & Davis Jr J. H. (2001). Base-promoted reactions in ionic liquid solvents. The Knoevenagel and Robinson annulation reactions. Tetrahedron Lett. 42 (35) 6053-6055. DOI:10.1016/S0040-4039(01)01228-X.

  • Harjani J. R. Nara S. J. & Salunkhe M. M. (2002). Lewis acidic ionic liquids for the synthesis of electrophilic alkenes via the Knoevenagel condensation. Tetrahedron Lett. 43 (6) 1127-1130. DOI:10.1016/S0040-4039(01)02341-3.

  • Bhagat S. Sharma R. & Chakraborti A. K. (2006). Dual-activation protocol for tandem cross-aldol condensation: An easy and highly efficient synthesis of αα'-bis(aryl/alkylmethylidene)ketones. J. Molecular Catal. A: Chem. 260 (1-2) 235-240. DOI:10.1016/j.molcata.2006.07.018.

  • Zabicky J. (1961). The kinetics and mechanism of carbonyl-methylene condensation reactions. Part XI. Stereochemistry of the products. J. Chem. Soc. 683-687. DOI: 10.1039/JR9610000683.

  • An-Guo Y. Luo L. Guo-Feng W. Xin-Zhi C. Wei-Dong Y. Jian-Hui C. & Kai-Yuan. (2009). Knoevenagel condensation catalyzed by DBU Brönsted ionic liquid without solvent. Z. Chem. Res. Chin. Univ. 25 (6) 876-881.

  • Al-Hazimi H. M. A. & Al-Alshaikh M. A. (2010). Microwave assisted synthesis of substituted furan-2-carboxaldehydes and their reactions. J. Saudi Chem. Soc. Available online. DOI:10.1016/j.jscs.2010.04.009.

  • Evdokimov N. M. Kireev A. S. Yakovenko A. A. Antipin M. Yu. Magedov I. V. & Kornienko A. (2007). One-step synthesis of heterocyclic privileged medicinal Scaffolds by a multicomponent reaction of malononitrile with aldehydes and thiols. J. Org. Chem. 72 (9) 3443-3453. DOI: 10.1021/jo070114u.

  • Sridhar M. Rao R. M. Baba N. H. K. & Kumbhare R. M. (2007). Microwave accelerated Gewald reaction: synthesis of 2-aminothiophenes. Tetrahedron Lett. 48(18) 3171-3172. DOI:10.1016/j.tetlet.2007.03.052.

  • Sabnis R. W. Rangnekar D. W. & Sonawane N. D. (1999). 2-Aminothiophenes by the gewald reaction. J. Heterocycl. Chem. 36 (2) 333-345. DOI: 10.1002/jhet.5570360203.

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.975
5-year IMPACT FACTOR: 0.878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 405 228 11
PDF Downloads 169 97 4