Geomorphological modelling and mapping of the Peru-Chile Trench by GMT


The author presents a geospatial analysis of the Peru-Chile Trench located in the South Pacific Ocean by the Generic Mapping Tool (GMT) scripting toolset used to process and model data sets. The study goal is to perform geomorphological modelling by the comparison of two segments of the trench located in northern (Peruvian) and southern (Chilean) parts. The aim of the study is to perform automatic digitizing profiles using GMT and several scripting modules. Orthogonal cross-section profiles transecting the trench in a perpendicular direction were automatically digitized, and the profiles visualized and compared. The profiles show variations in the geomorphology of the trench in the northern and southern segments. To visualize geological and geophysical settings, a set of the thematic maps was visualized by GMT modules: free-air gravity anomaly, geoid, geology and bathymetry. The results of the descriptive statistical analysis of the bathymetry in both segments show that the most frequent depths for the Peruvian segment of the Peru-Chile Trench range from -4,000 to -4,200 (827 recorded samples) versus the range of -4,500 to -4,700 m for the Peruvian segment (1,410 samples). The Peruvian segment of the trench is deeper and its geomorphology steeper with abrupt slopes compared to the Chilean segment. A comparison of the data distribution for both segments gives the following results. The Peruvian segment has the majority of data (23%) reaching 1,410 (-4,500 m to -4,700 m). This peak shows a steep pattern in data distribution, while other data in the neighbouring diapason are significantly lower: 559 (-4,700 m to -5,000 m) and 807 (-4,200 m to -4,400 m). The Chilean segment has more unified data distribution for depths of -6,000 m to -7,000 m. This paper presents GMT workflow for the cartographic automatic modelling and mapping deep-sea trench geomorphology.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Amin H., Sjöberg L.E., Bagherbandi M., 2019, A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters. “Journal of Geodesy” Vol. 93, no. 10, pp. 1943–1961.

  • Angel M.V., 1982, Ocean trench conservation. “Environmentalist” Vol. 2, pp.1–17.

  • Behrmann J.S., Leslie S.D., Cande S.C., 1994, ODP Leg 141 Scientific Party. Tectonics and geology of spreading ridge subduction at the Chile Triple Junction: A synthesis of results along from Leg 141 of the Ocean Drilling Program. “Geologische Rundschau” Bd. 83, pp. 832–852.

  • Bello-González J.P., Contreras-Reyes E., Arriagada C., 2018, Predicted path for hotspot tracks off South America since Paleocene times: Tectonic implications of ridge-trench collision along the Andean margin. “Gondwana Research” Vol. 64, pp. 216–234. DOI:10.1016/

  • Cande S.C., Leslie R. B., 1986, Late Cenozoic tectonics of the southern Chile Trench. “Journal of Geophysical Research” Vol. 91, pp. 471–496.

  • Cecioni A., Pineda V., 2010, Geology and geomorphology of natural hazards and human-induced disasters in Chile. “Developments in Earth Surface Processes” Vol. 13, pp. 379–413. DOI: 10.1016/S0928-2025(08)10018-9

  • Cifuentes I.L.,1989, The 1960 Chilean earthquakes. “Journal of Geophysical Research” Vol. 94, pp. 665–680.

  • Clark M.R., Rowden A.A., Schlacher R., Williams A., Consalvey M., 2010, The ecology of seamounts: structure, function, and human impacts. “Annual Review of Marine Science” Vol. 2, pp. 253–278. DOI: 110.1146/annurev-marine-120308-081109

  • Contreras-Reyes E., Carrizo D., 2011, Control of high oceanic features and subduction channel on earthquake ruptures along the Chile-Peru subduction zone. “Physics of the Earth and Planetary Interiors” Vol. pp. 186, 49–58. DOI: 10.1016/j.pepi. 2011.03.002

  • Contreras-Reyes E., Jara J., Maksymowicz A., Weinrebe W., 2013, Sediment loading at the southern Chilean trench and its tectonic implications. “Journal of Geodynamics” Vol. 66, pp. 134–145. DOI: 10.1016/j.jog.2013.02.009

  • Contreras-Reyes E., Osses A., 2010, Lithospheric flexure modeling seaward of the Chile trench: implications for oceanic plate weakening in the Trench Outer Rise region. “Geophysical Journal International” Vol. 182, no.1, pp. 97–112. DOI: 10.1111/j.1365-246X.2010.04629.x

  • Contreras-Reyes E., Flueh E.R., Grevemeyer I., 2010, Tectonic control on sediment accretion and subduction off south-central Chile: implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes. “Tectonics” Vol. 29, no. 6. DOI: 10.1029/2010TC002734

  • Contreras-Reyes E., Grevemeyer I., Flueh E.R.M., Scherwath M., Heesemann M., 2007, Alteration of the subducting oceanic lithosphere at the southern central Chile trench-outer rise. “Geochemistry Geophysics Geosystems” Vol. 8, Q07003. DOI: 10. 1029/2007GC001632.

  • Contreras-Reyes E., Grevemeyer I., Flueh E.R., Reichert C., 2008, Upper lithospheric structure of the subduction zone offshore southern Arauco Peninsula, Chile at -38°S. “Journal of Geophysical Research” Vol. 113, B07303, DOI: 10.1029/2007JB005569.

  • Costello M.J., Berghe, van den E., 2006, Ocean bio-diversity informatics: a new era in marine biology research and management. “Marine Ecology – Progress Series” No. 316, pp. 203–214. DOI: 10.3354/meps316203

  • Divins D., 2003, Total sediment thickness of the world’s oceans and marginal seas. Boulder, CO. NOAA National Geophysical Data Center.

  • Fisher R.L., Raitt R.W., 1962, Topography and structure of the Peru-Chile trench. “Deep-Sea Research” Vol. 9, pp. 424–443.

  • Gambi C., Vanreusel A., Danovaro R., 2003, Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean). “Deep-Sea Research I” No. 50, pp. 103–117.

  • Gauss F.W., 1828, Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona durch Beobachtungen am Ramsdenschen Zenithsector. Göttingen: Vanderschoeck und Ruprecht, pp. 48–50.

  • Geersen J., 2019, Sediment-starved trenches and rough subducting plates are conducive to T tsunami earthquakes. “Tectonophysics” No. 762, pp. 28–44. DOI: 10.1016/j.tecto.2019.04.024

  • Geersen J., Voelker D., Behrmann J.H., 2018, Oceanic trenches. In: Submarine Geomorphology. Cham: Springer, pp. 409–424.

  • Hayes D.E.,1966, A geophysical investigation of the Peru-Chile Trench. “Marine Geology” Vol. 4, no. 5, pp. 309–351. DOI: 10.1016/0025-3227(66)90038-7

  • Heuret A., Lallemand S., 2005, Plate motions, slab dynamics and back-arc deformation. “Physics of the Earth and Planetary Interiors” Vol. 149, pp. 31–51. DOI: 10.1016/j.pepi.2004.08.022

  • Kaus B., Becker T.W., 2008, A numerical study on the effects of surface boundary condition and rheology on slab dynamics. “Bollettino di Geofisica Teorica ed Applicata” Vol. 49, no. 2, pp. 177–181.

  • Kincaid C., Olson P., 1987, An experimental study of subduction and slab migration. “Journal of Geophysical Research” Vol. 92, pp. 13832–13840.

  • Lacey N.C., Rowden A.A., Clark M.R., Kilgallen N.M., Linley T., Mayor D.J., Jamieson A.J., 2016, Community structure and diversity of scavenging amphipods from bathyal to hadal depths in three South Pacific Trenches. “Deep-Sea Research I” No. 111, pp. 121–137. DOI: 10.1016/j.dsr.2016.02.014

  • Lemenkova P., 2018a, R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. “Journal of Marine Technology and Environment” Vol. 2, pp. 35–42. DOI: 10.6084/m9.figshare. 7434167

  • Lemenkova P., 2018b, Factor analysis by R programming to assess variability among environmental determinants of the Mariana Trench. “Turkish Journal of Maritime and Marine Sciences” Vol. 4, pp. 146–155. DOI: 10.6084/m9.figshare.7358207

  • Lemenkova P. 2019a, Statistical analysis of the Mariana Trench geomorphology using R programming language. “Geodesy and Cartography” Vol. 45, no. 2, pp. 57–84. DOI: 10.3846/gac.2019.3785

  • Lemenkova P., 2019b, An empirical study of R applications for data analysis in marine geology. “Marine Science and Technology Bulletin” Vol. 8, no. 1, pp. 1–9. DOI: 10.33714/masteb.486678

  • Lemenkova P., 2019c., Processing oceanographic data by Python libraries NumPy, SciPy and Pandas. “Aquatic Research” Vol. 2, pp. 73–91. DOI: 10.3153/AR19009

  • Lemenkova P., 2019d, Testing linear regressions by StatsModel Library of Python for oceanological data interpretation. “Aquatic Sciences and Engineering” Vol. 34, pp. 51–60. DOI: 10.26650/ASE2019547010

  • Lemenkova P., 2019e, Numerical data modelling and classification in marine geology by the SPSS statistics. “International Journal of Engineering Technologies” Vol. 5, no. 2, pp. 90–99. DOI: 10.6084/m9.figshare.8796941

  • Manea V.C., Manea M., Ferrari L., Orozco-Esquivel T., Valenzuela R.W., Husker A., Kostoglodov V., 2017, A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile. “Tectonophysics” No. 695, pp. 27–52. DOI: 10.1016/j. tecto.2016.11.037

  • Mather A.E., Hartley A.J., Griffiths J.S., 2014, The giant coastal landslides of Northern Chile: Tectonic and climate interactions on a classic convergent plate margin. “Earth and Planetary Science Letters” No. 388, pp. 249–256. DOI: 10.1016/j. epsl.2013.10.019

  • Oakley A.J., Taylor B., Moore G.F., 2008, Pacific plate subduction beneath the central Mariana and Izu--Bonin fore-arcs: new insights from an old margin. “Geochemistry Geophysics Geosystems” Vol. 9. DOI: 10.1029/2007GC001820

  • Osborn K.J., Haddock S.H.D., Pleijel F., Madin L.P., Rouse G.W., 2009, Deep-sea, swimming worms with luminescent ‘bombs’. “Science” Vol. 325, 964. DOI: 10.1126/science.1172488

  • Prince R.A., Kulm L.D., 1975, Crustal rupture and the initiation of imbricate thrusting in the Peru-Chile Trench. “GSA Bulletin” Vol. 86, no. 12, pp. 1639–1653.

  • Ranero C.R., Villaseor A., Morgan Ph.J., Wdinrebe W., 2005, Relationship between bending-faulting at trenches and intermediate-depth seismicity. “Geo-chemistry, Geophysics, Geosystems” Vol. 6. DOI: 10.1029/2005GC000997

  • Robison B.H., 2004, Deep pelagic biology. “Journal of Experimental Marine Biology and Ecology” No. 300, pp. 253–272. DOI: 10.1016/j.jembe.2004.01.012

  • Robison B.H., 2009, Conservation of deep pelagic bio-diversity. “Conservation Biology” Vol. 23, pp. 847–858. DOI: 10.1111/j.1523-1739.2009.01219.x

  • Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E., Francis R., 2014, New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. “Science” Vol. 346, no. 6205, pp. 65–67.

  • Sarmiento-Rojas L.F., Van Wess J.D., Cloetingh S., 2006, Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: inferences from tectonic models. “Journal of South American Earth Sciences” Vol. 21, pp. 383–411.

  • Schellart W.P., Lister G.S., Toy V.G., 2006, A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. “Earth Review” Vol. 76, pp. 191–233.

  • Schenke H.W., Lemenkova P., 2008, Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der bathymetrischen Petschora-See Daten in der Petschora-See. “Hydrographische Nachrichten” Bd. 25, H. 81, pp. 16–21. DOI: 10.6084/m9.fig-share.7435538

  • Smith W.H.F., 1993, On the accuracy of digital bathy-metric data. “Journal of Geophysical Research” Vol. 98, no. B6, pp. 9591–9603.

  • Smith W.H.F., Sandwell D.T., 1995, Marine gravity field from declassified Geosat and ERS-1 altimetry, “EOS Transactions American Geophysical Union” Vol. 76, Fall Mitting Suppl, F156.

  • Stewart H.A., Jamieson A.J., 2018, Habitat heterogeneity of hadal trenches: Considerations and implications for future studies. “Progress in Oceanography” Vol. 161, pp. 47–65. DOI: 10.1016/j.pocean.2018.01.007

  • Suetova I.A., Ushakova L.A., Lemenkova P., 2005, Geoinformation mapping of the Barents and Pechora Seas. “Geography and Natural Resources” Vol. 4, pp. 138–142. DOI: 10.6084/m9.figshare.7435535

  • Thornburg T.M., Kulm, L.D., 1990, Submarine-fan development in the southern Chile Trench: a dynamic interplay of tectonics and sedimentation. “Geological Society of America. Bulletin.” Vol. 102, pp. 1658–1680.

  • Völker D., Reichel T., Wiedicke M., Heubeck C., 2008, Turbidites deposited on Southern Central Chilean seamounts: Evidence for energetic turbidity currents. “Marine Geology” Vol. 251, no. 1-2, pp. 15–31. DOI: 10.1016/j.margeo.2008.01.008

  • Wahr J., Molenaar M., Bryan F., 1998, Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. “Journal of Geophysical Research” Vol. 103, pp. 30205–30229.

  • Wessel P., Smith W.H.F., 1998, New, improved version of the generic mapping tools released. “EOS Transactions American Geophysical Union” Vol. 79, p. 579.

  • Wessel P., Smith W.H.F., Scharroo R., Luis J.F., Wobbe F., 2013, Generic mapping tools: improved version released. “EOS Transactions American Geophysical Union” Vol. 94, no. 45, pp. 409–410. DOI: 10.1002/2013EO450001

  • Wessel P., Smith W.H.F., 2018, The generic mapping tools. Version 4.5.18 Technical reference and cookbook (Computer software manual). U.S.A.

  • Wessel P., Smith W.H.F., Scharroo R., Luis J., Wobbe F., 2019, The generic mapping tools. GMT man pages. Release 5.4.5 (Computer software manual). U.S.A.

  • Wessel P., Watts A.B., 1988, On the accuracy of marine gravity measurements. “Journal of Geophysical Research” Vol. 93, pp. 393–413.

  • Yang A., Fu Y., 2018, Estimates of effective elastic thickness at subduction zones. “Journal of Geo-dynamics” No. 117, pp. 75–87. DOI: 10.1016/j. jog.2018.04.007

  • Yoshida M., 2017, Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems. “Physics of the Earth and Planetary Interiors” No. 268, pp. 35–53. DOI: 10.1016/j. pepi.2017.05.004

  • Zeigler J.M., Athearn W.D., Small H.,1957, Profiles across the Peru-Chile Trench. “Deep-Sea Research” Vol. 4, pp. 238–249. DOI: 10.1016/0146-6313(56)90056-9


Journal + Issues