Open Access

Geomorphological modelling and mapping of the Peru-Chile Trench by GMT


Cite

Amin H., Sjöberg L.E., Bagherbandi M., 2019, A global vertical datum defined by the conventional geoid potential and the Earth ellipsoid parameters. “Journal of Geodesy” Vol. 93, no. 10, pp. 1943–1961. https://doi.org/10.1007/s00190-019-01293-310.1007/s00190-019-01293-3Search in Google Scholar

Angel M.V., 1982, Ocean trench conservation. “Environmentalist” Vol. 2, pp.1–17.10.1016/S0251-1088(82)80001-6Search in Google Scholar

Behrmann J.S., Leslie S.D., Cande S.C., 1994, ODP Leg 141 Scientific Party. Tectonics and geology of spreading ridge subduction at the Chile Triple Junction: A synthesis of results along from Leg 141 of the Ocean Drilling Program. “Geologische Rundschau” Bd. 83, pp. 832–852.10.1007/BF00251080Search in Google Scholar

Bello-González J.P., Contreras-Reyes E., Arriagada C., 2018, Predicted path for hotspot tracks off South America since Paleocene times: Tectonic implications of ridge-trench collision along the Andean margin. “Gondwana Research” Vol. 64, pp. 216–234. DOI:10.1016/j.gr.2018.07.008+10.1016/j.gr.2018.07.008Open DOISearch in Google Scholar

Cande S.C., Leslie R. B., 1986, Late Cenozoic tectonics of the southern Chile Trench. “Journal of Geophysical Research” Vol. 91, pp. 471–496.10.1029/JB091iB01p00471Search in Google Scholar

Cecioni A., Pineda V., 2010, Geology and geomorphology of natural hazards and human-induced disasters in Chile. “Developments in Earth Surface Processes” Vol. 13, pp. 379–413. DOI: 10.1016/S0928-2025(08)10018-910.1016/S0928-2025(08)10018-9Open DOISearch in Google Scholar

Cifuentes I.L.,1989, The 1960 Chilean earthquakes. “Journal of Geophysical Research” Vol. 94, pp. 665–680.10.1029/JB094iB01p00665Search in Google Scholar

Clark M.R., Rowden A.A., Schlacher R., Williams A., Consalvey M., 2010, The ecology of seamounts: structure, function, and human impacts. “Annual Review of Marine Science” Vol. 2, pp. 253–278. DOI: 110.1146/annurev-marine-120308-08110910.1146/annurev-marine-120308-08110921141665Search in Google Scholar

Contreras-Reyes E., Carrizo D., 2011, Control of high oceanic features and subduction channel on earthquake ruptures along the Chile-Peru subduction zone. “Physics of the Earth and Planetary Interiors” Vol. pp. 186, 49–58. DOI: 10.1016/j.pepi. 2011.03.00210.1016/j.pepi.2011.03.002Open DOISearch in Google Scholar

Contreras-Reyes E., Jara J., Maksymowicz A., Weinrebe W., 2013, Sediment loading at the southern Chilean trench and its tectonic implications. “Journal of Geodynamics” Vol. 66, pp. 134–145. DOI: 10.1016/j.jog.2013.02.00910.1016/j.jog.2013.02.009Open DOISearch in Google Scholar

Contreras-Reyes E., Osses A., 2010, Lithospheric flexure modeling seaward of the Chile trench: implications for oceanic plate weakening in the Trench Outer Rise region. “Geophysical Journal International” Vol. 182, no.1, pp. 97–112. DOI: 10.1111/j.1365-246X.2010.04629.x10.1111/j.1365-246X.2010.04629.xOpen DOISearch in Google Scholar

Contreras-Reyes E., Flueh E.R., Grevemeyer I., 2010, Tectonic control on sediment accretion and subduction off south-central Chile: implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes. “Tectonics” Vol. 29, no. 6. DOI: 10.1029/2010TC00273410.1029/2010TC002734Open DOISearch in Google Scholar

Contreras-Reyes E., Grevemeyer I., Flueh E.R.M., Scherwath M., Heesemann M., 2007, Alteration of the subducting oceanic lithosphere at the southern central Chile trench-outer rise. “Geochemistry Geophysics Geosystems” Vol. 8, Q07003. DOI: 10. 1029/2007GC001632.10.1029/2007GC001632Search in Google Scholar

Contreras-Reyes E., Grevemeyer I., Flueh E.R., Reichert C., 2008, Upper lithospheric structure of the subduction zone offshore southern Arauco Peninsula, Chile at -38°S. “Journal of Geophysical Research” Vol. 113, B07303, DOI: 10.1029/2007JB005569.10.1029/2007JB005569Open DOISearch in Google Scholar

Costello M.J., Berghe, van den E., 2006, Ocean bio-diversity informatics: a new era in marine biology research and management. “Marine Ecology – Progress Series” No. 316, pp. 203–214. DOI: 10.3354/meps31620310.3354/meps316203Open DOISearch in Google Scholar

Divins D., 2003, Total sediment thickness of the world’s oceans and marginal seas. Boulder, CO. NOAA National Geophysical Data Center. http://www.ngdc.noaa.gov/mgg/sedthick/sedthick.htmlSearch in Google Scholar

Fisher R.L., Raitt R.W., 1962, Topography and structure of the Peru-Chile trench. “Deep-Sea Research” Vol. 9, pp. 424–443.10.1016/0011-7471(62)90094-3Search in Google Scholar

Gambi C., Vanreusel A., Danovaro R., 2003, Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean). “Deep-Sea Research I” No. 50, pp. 103–117.10.1016/S0967-0637(02)00143-7Search in Google Scholar

Gauss F.W., 1828, Bestimmung des Breitenunterschiedes zwischen den Sternwarten von Göttingen und Altona durch Beobachtungen am Ramsdenschen Zenithsector. Göttingen: Vanderschoeck und Ruprecht, pp. 48–50.Search in Google Scholar

Geersen J., 2019, Sediment-starved trenches and rough subducting plates are conducive to T tsunami earthquakes. “Tectonophysics” No. 762, pp. 28–44. DOI: 10.1016/j.tecto.2019.04.02410.1016/j.tecto.2019.04.024Open DOISearch in Google Scholar

Geersen J., Voelker D., Behrmann J.H., 2018, Oceanic trenches. In: Submarine Geomorphology. Cham: Springer, pp. 409–424.10.1007/978-3-319-57852-1_21Search in Google Scholar

Hayes D.E.,1966, A geophysical investigation of the Peru-Chile Trench. “Marine Geology” Vol. 4, no. 5, pp. 309–351. DOI: 10.1016/0025-3227(66)90038-710.1016/0025-3227(66)90038-7Open DOISearch in Google Scholar

Heuret A., Lallemand S., 2005, Plate motions, slab dynamics and back-arc deformation. “Physics of the Earth and Planetary Interiors” Vol. 149, pp. 31–51. DOI: 10.1016/j.pepi.2004.08.02210.1016/j.pepi.2004.08.022Open DOISearch in Google Scholar

Kaus B., Becker T.W., 2008, A numerical study on the effects of surface boundary condition and rheology on slab dynamics. “Bollettino di Geofisica Teorica ed Applicata” Vol. 49, no. 2, pp. 177–181.Search in Google Scholar

Kincaid C., Olson P., 1987, An experimental study of subduction and slab migration. “Journal of Geophysical Research” Vol. 92, pp. 13832–13840.10.1029/JB092iB13p13832Search in Google Scholar

Lacey N.C., Rowden A.A., Clark M.R., Kilgallen N.M., Linley T., Mayor D.J., Jamieson A.J., 2016, Community structure and diversity of scavenging amphipods from bathyal to hadal depths in three South Pacific Trenches. “Deep-Sea Research I” No. 111, pp. 121–137. DOI: 10.1016/j.dsr.2016.02.01410.1016/j.dsr.2016.02.014Open DOISearch in Google Scholar

Lemenkova P., 2018a, R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. “Journal of Marine Technology and Environment” Vol. 2, pp. 35–42. DOI: 10.6084/m9.figshare. 743416710.6084/m9.figshare.7434167Open DOISearch in Google Scholar

Lemenkova P., 2018b, Factor analysis by R programming to assess variability among environmental determinants of the Mariana Trench. “Turkish Journal of Maritime and Marine Sciences” Vol. 4, pp. 146–155. DOI: 10.6084/m9.figshare.735820710.6084/m9.figshare.7358207Open DOISearch in Google Scholar

Lemenkova P. 2019a, Statistical analysis of the Mariana Trench geomorphology using R programming language. “Geodesy and Cartography” Vol. 45, no. 2, pp. 57–84. DOI: 10.3846/gac.2019.378510.3846/gac.2019.3785Open DOISearch in Google Scholar

Lemenkova P., 2019b, An empirical study of R applications for data analysis in marine geology. “Marine Science and Technology Bulletin” Vol. 8, no. 1, pp. 1–9. DOI: 10.33714/masteb.48667810.33714/masteb.486678Search in Google Scholar

Lemenkova P., 2019c., Processing oceanographic data by Python libraries NumPy, SciPy and Pandas. “Aquatic Research” Vol. 2, pp. 73–91. DOI: 10.3153/AR1900910.3153/AR19009Open DOISearch in Google Scholar

Lemenkova P., 2019d, Testing linear regressions by StatsModel Library of Python for oceanological data interpretation. “Aquatic Sciences and Engineering” Vol. 34, pp. 51–60. DOI: 10.26650/ASE201954701010.26650/ASE2019547010Search in Google Scholar

Lemenkova P., 2019e, Numerical data modelling and classification in marine geology by the SPSS statistics. “International Journal of Engineering Technologies” Vol. 5, no. 2, pp. 90–99. DOI: 10.6084/m9.figshare.879694110.6084/m9.figshare.8796941Open DOISearch in Google Scholar

Manea V.C., Manea M., Ferrari L., Orozco-Esquivel T., Valenzuela R.W., Husker A., Kostoglodov V., 2017, A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile. “Tectonophysics” No. 695, pp. 27–52. DOI: 10.1016/j. tecto.2016.11.03710.1016/j.tecto.2016.11.037Open DOISearch in Google Scholar

Mather A.E., Hartley A.J., Griffiths J.S., 2014, The giant coastal landslides of Northern Chile: Tectonic and climate interactions on a classic convergent plate margin. “Earth and Planetary Science Letters” No. 388, pp. 249–256. DOI: 10.1016/j. epsl.2013.10.01910.1016/j.epsl.2013.10.019Open DOISearch in Google Scholar

Oakley A.J., Taylor B., Moore G.F., 2008, Pacific plate subduction beneath the central Mariana and Izu--Bonin fore-arcs: new insights from an old margin. “Geochemistry Geophysics Geosystems” Vol. 9. DOI: 10.1029/2007GC00182010.1029/2007GC001820Open DOISearch in Google Scholar

Osborn K.J., Haddock S.H.D., Pleijel F., Madin L.P., Rouse G.W., 2009, Deep-sea, swimming worms with luminescent ‘bombs’. “Science” Vol. 325, 964. DOI: 10.1126/science.117248810.1126/.1172488Open DOISearch in Google Scholar

Prince R.A., Kulm L.D., 1975, Crustal rupture and the initiation of imbricate thrusting in the Peru-Chile Trench. “GSA Bulletin” Vol. 86, no. 12, pp. 1639–1653.10.1130/0016-7606(1975)86<1639:CRATIO>2.0.CO;2Search in Google Scholar

Ranero C.R., Villaseor A., Morgan Ph.J., Wdinrebe W., 2005, Relationship between bending-faulting at trenches and intermediate-depth seismicity. “Geo-chemistry, Geophysics, Geosystems” Vol. 6. DOI: 10.1029/2005GC00099710.1029/2005GC000997Open DOISearch in Google Scholar

Robison B.H., 2004, Deep pelagic biology. “Journal of Experimental Marine Biology and Ecology” No. 300, pp. 253–272. DOI: 10.1016/j.jembe.2004.01.01210.1016/j.jembe.2004.01.012Open DOISearch in Google Scholar

Robison B.H., 2009, Conservation of deep pelagic bio-diversity. “Conservation Biology” Vol. 23, pp. 847–858. DOI: 10.1111/j.1523-1739.2009.01219.x10.1111/j.1523-1739.2009.01219.xOpen DOISearch in Google Scholar

Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E., Francis R., 2014, New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. “Science” Vol. 346, no. 6205, pp. 65–67.10.1126/science.1258213Search in Google Scholar

Sarmiento-Rojas L.F., Van Wess J.D., Cloetingh S., 2006, Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: inferences from tectonic models. “Journal of South American Earth Sciences” Vol. 21, pp. 383–411.10.1016/j.jsames.2006.07.003Search in Google Scholar

Schellart W.P., Lister G.S., Toy V.G., 2006, A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. “Earth Review” Vol. 76, pp. 191–233.10.1016/j.earscirev.2006.01.002Search in Google Scholar

Schenke H.W., Lemenkova P., 2008, Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der bathymetrischen Petschora-See Daten in der Petschora-See. “Hydrographische Nachrichten” Bd. 25, H. 81, pp. 16–21. DOI: 10.6084/m9.fig-share.743553810.6084/m9.fig-share.7435538Open DOISearch in Google Scholar

Smith W.H.F., 1993, On the accuracy of digital bathy-metric data. “Journal of Geophysical Research” Vol. 98, no. B6, pp. 9591–9603.10.1029/93JB00716Search in Google Scholar

Smith W.H.F., Sandwell D.T., 1995, Marine gravity field from declassified Geosat and ERS-1 altimetry, “EOS Transactions American Geophysical Union” Vol. 76, Fall Mitting Suppl, F156.Search in Google Scholar

Stewart H.A., Jamieson A.J., 2018, Habitat heterogeneity of hadal trenches: Considerations and implications for future studies. “Progress in Oceanography” Vol. 161, pp. 47–65. DOI: 10.1016/j.pocean.2018.01.00710.1016/j.pocean.2018.01.007Open DOISearch in Google Scholar

Suetova I.A., Ushakova L.A., Lemenkova P., 2005, Geoinformation mapping of the Barents and Pechora Seas. “Geography and Natural Resources” Vol. 4, pp. 138–142. DOI: 10.6084/m9.figshare.743553510.6084/m9.figshare.7435535Open DOISearch in Google Scholar

Thornburg T.M., Kulm, L.D., 1990, Submarine-fan development in the southern Chile Trench: a dynamic interplay of tectonics and sedimentation. “Geological Society of America. Bulletin.” Vol. 102, pp. 1658–1680.10.1130/0016-7606(1990)102<1658:SFDITS>2.3.CO;2Search in Google Scholar

Völker D., Reichel T., Wiedicke M., Heubeck C., 2008, Turbidites deposited on Southern Central Chilean seamounts: Evidence for energetic turbidity currents. “Marine Geology” Vol. 251, no. 1-2, pp. 15–31. DOI: 10.1016/j.margeo.2008.01.00810.1016/j.margeo.2008.01.008Open DOISearch in Google Scholar

Wahr J., Molenaar M., Bryan F., 1998, Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. “Journal of Geophysical Research” Vol. 103, pp. 30205–30229.10.1029/98JB02844Search in Google Scholar

Wessel P., Smith W.H.F., 1998, New, improved version of the generic mapping tools released. “EOS Transactions American Geophysical Union” Vol. 79, p. 579.10.1029/98EO00426Search in Google Scholar

Wessel P., Smith W.H.F., Scharroo R., Luis J.F., Wobbe F., 2013, Generic mapping tools: improved version released. “EOS Transactions American Geophysical Union” Vol. 94, no. 45, pp. 409–410. DOI: 10.1002/2013EO45000110.1002/2013EO450001Open DOISearch in Google Scholar

Wessel P., Smith W.H.F., 2018, The generic mapping tools. Version 4.5.18 Technical reference and cookbook (Computer software manual). U.S.A.Search in Google Scholar

Wessel P., Smith W.H.F., Scharroo R., Luis J., Wobbe F., 2019, The generic mapping tools. GMT man pages. Release 5.4.5 (Computer software manual). U.S.A.Search in Google Scholar

Wessel P., Watts A.B., 1988, On the accuracy of marine gravity measurements. “Journal of Geophysical Research” Vol. 93, pp. 393–413.10.1029/JB093iB01p00393Search in Google Scholar

Yang A., Fu Y., 2018, Estimates of effective elastic thickness at subduction zones. “Journal of Geo-dynamics” No. 117, pp. 75–87. DOI: 10.1016/j. jog.2018.04.00710.1016/j.jog.2018.04.007Open DOISearch in Google Scholar

Yoshida M., 2017, Trench dynamics: Effects of dynamically migrating trench on subducting slab morphology and characteristics of subduction zones systems. “Physics of the Earth and Planetary Interiors” No. 268, pp. 35–53. DOI: 10.1016/j. pepi.2017.05.00410.1016/j.pepi.2017.05.004Open DOISearch in Google Scholar

Zeigler J.M., Athearn W.D., Small H.,1957, Profiles across the Peru-Chile Trench. “Deep-Sea Research” Vol. 4, pp. 238–249. DOI: 10.1016/0146-6313(56)90056-910.1016/0146-6313(56)90056-9Open DOISearch in Google Scholar

eISSN:
2450-6966
ISSN:
0324-8321
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, Cartography and Photogrammetry, other, History, Topics in History, History of Science