Crystal structure and Mössbauer study of FeAl2O4

Ilona Jastrzębska 1 , Jacek Szczerba 1 , Paweł Stoch 1 , Artur Błachowski 2 , Krzysztof Ruebenbauer 2 , Ryszard Prorok 1  and Edyta Śnieżek 1
  • 1 Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 Mickiewicza Ave., 30-059 Kraków, Poland
  • 2 Mössbauer Spectroscopy Division, Institute of Physics, Pedagogical University, 2 Podchorążych Str., 30-084 Kraków, Poland

Abstract

In this work the synthesis of hercynite from Fe2O3 and Al2O3 powders was carried out by arc-melting method under the protective argon atmosphere. The obtained material was characterized with the use of powder X-ray diffractometry (XRD) and Mössbauer spectroscopy (MS). A Mössbauer effect in hercynite obtained by the arc-melting method indicated the cations distribution in the spinel structure among the tetrahedral and octahedral interstices. The presence of Fe2+ ions was detected in both tetrahedral and octahedral sites while Fe3+ ions occupied only the octahedral interstices. The approximate formula of the obtained iron-aluminate spinel was as follows (Fe2+ 0.77Al3+ 0.23) (Fe3+ 0.07Fe2+ 0.05Al0.88)2O4.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Hill, H. J., Craig, J. R., & Gibbs, G. V. (1979). Systematics of the spinel structure type. Phys. Chem. Minerals, 4, 317–339.

  • 2. Dormann, J. L., Seqqat, M., Fiorani, D., Nogues, M., Soubeyroux, J. L., Bhargava, S. C., & Renaudin, P. (1990). Mössbauer studies of FeAl2O4 and FeIn2S4 spin glass spinels. Hyperfine Interact., 54, 503–508. DOI: 10.1007/s10751-004-7332-8.

  • 3. Russo, U., Carbonin, S., & Giusta, A. D. (1996). Mössbauer spectral studies of natural substituted spinels. In G. J. Long & F. Grandjean (Eds.), Mössbauer spectroscopy applied to magnetism and material science (Vol. 2, Chapter 9). New York: Plenum Press.

  • 4. Sickafus, K. E., Wills, J. M., & Grimes, N. W. (1999). Structure of spinel. J. Am. Ceram. Soc., 82(12), 3279–3292. DOI: 10.1111/j.1151-2916.1999.tb02241.x.

  • 5. Roisnel, T., & Rodriguez-Carvajal, J. (2000). Win-PLOTR: a Windows tool for powder diffraction patterns analysis. In Materials Science Forum: Proceedings of the 7th European Powder Diffraction Conference, 20–23 May 2000, Barcelona, Spain (EPDIC 7) (pp. 118–123).

  • 6. Rancourt, D. G., & Ping, J. Y. (1991). Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 58(1), 85–97.

  • 7. Lenaz, D., & Skokby, H. (2013). Structural changes in the FeAl2O4-FeCr2O4 solid solutions series and their consequences on natural Cr-bearing spinels, Phys. Chem. Miner., 40(7), 587–595. DOI: 10.1007/s00269-013-0595-3.

  • 8. Yagnik, C. M., & Mathur, H. B. (1968). A Mössbauer and X-ray diffraction study on the cation distribution in FeAl2O4, J. Phys. C, 2(1), 469–472. DOI: 10.1088/0022-3719/1/2/320.

  • 9. Andreozzi, G. B., Baldi, G., Bernardini, G. P., Benedetto, F., & Romanelli, M. (2004). 57Fe Mössbauer and electronic spectroscopy study on a new synthetic hercynite-based pigment, J. Eur. Ceram. Soc., 24, 821–824. DOI: 10.1016/S0955-2219(03)00329-7.

OPEN ACCESS

Journal + Issues

Search