Comparison of Molecular Iodine Spectral Properties at 514.7 and 532 nm Wavelengths

Open access


We present results of investigation and comparison of spectral properties of molecular iodine transitions in the spectral region of 514.7 nm that are suitable for laser frequency stabilization and metrology of length. Eight Doppler-broadened transitions that were not studied in detail before were investigated with the help of frequency doubled Yb-doped fiber laser, and three of the most promising lines were studied in detail with prospect of using them in frequency stabilization of new laser standards. The spectral properties of hyperfine components (linewidths, signal-to-noise ratio) were compared with transitions that are well known and traditionally used for stabilization of frequency doubled Nd:YAG laser at the 532 nm region with the same molecular iodine absorption. The external frequency doubling arrangement with waveguide crystal and the Yb-doped fiber laser is also briefly described together with the observed effect of laser aging.

[1] Mironov, A.V., Privalov, V.E., Savelev, S.K. (1997). Complete calculated atlas of the absorption spectrum of iodine-127 (B-X system of bands) and complex of programs for the tabulation of iodine lines. Optics and Spectroscopy, 82 (3), 332-333.

[2] Salami, H., Ross, A.J. (2005). A molecular iodine atlas in ascii format. Journal of Molecular Spectroscopy, 233 (1), 157-159.

[3] Simmons, J.D., Hougen, J.T. (1977). Atlas of I2 spectrum from 19 000 to 18 000 Cm-1. Journal of Research of the National Bureau of Standards, Section A : Physics and Chemistry, 81 (1), 25-80.

[4] Cheng, W.Y., Chen, L.S., Yoon, T.H., Hall, J.L., Ye, J. (2002). Sub-Doppler molecular-iodine transitions near the dissociation limit (523-498 nm). Optics Letters, 27 (8), 571-573.

[5] Quinn, T.J. (2003). Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001). Metrologia, 40 (2), 103-133.

[6] Balhorn, R., Lebowsky, F., Kunzmann, H. (1972). Frequency stabilization of internal-mirror helium-neon lasers. Applied Optics, 11 (4), 742-744.

[7] Nevsky, A.Y., Holzwarth, R., Reichert, et al. (2001). Frequency comparison and absolute frequency measurement of I-2-stabilized lasers at 532 nm. Optics Communications, 192 (3-6), 263-272.

[8] Petru, F., Popela, B., Vesela, Z. (1993). Design and performance of compact iodine stabilized He-Ne lasers at lambda=633 nm with a short optical-resonator. Measurement Science & Technology, 4 (4), 506-512.

[9] Sevcik, R., Guttenova, J. (2007). Primary length standard adjustment. In 15th Czech-Polish-Slovak Conference on Wave and Quantum Aspects of Contemporary Optics, Proc. SPIE 6609.

[10] Galzerano, G., Bava, E., Bisi, M., Bertinetto, F., Svelto, C. (1999). Frequency stabilization of frequency-doubled Nd : YAG lasers at 532 nm by frequency modulation spectroscopy technique. IEEE Transactions on Instrumentation and Measurement, 48 (2), 540-543.

[11] Nyholm, K., Merimaa, M., Ahola, T., Lassila, A. (2003). Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using thirdharmonic technique. IEEE Transactions on Instrumentation and Measurement, 52 (2), 284-287.

[12] Bartl, J., Guttenova, J., Jacko, V., Sevcik, R. (2007). Circuits for optical frequency stabilization of metrological lasers. In Measurement 2007 : 6th International Conference on Measurement. Bratislava : Institute of Measurement Science SAS, 131-134.

[13] Hrabina, J., Petru, F., Jedlicka, P., Cip, O., Lazar, J. (2007). Purity of iodine cells and optical frequency shift of iodine-stabilized He-Ne lasers. Optoelectronics and Advanced Materials-Rapid Communications, 1 (5), 202-206.

[14] Ciddor, P.E., Duffy, R.M. (1983). Two-mode frequency-stabilized He-Ne (633 nm) lasers : Studies of short- and long-term stability. Journal of Physics E : Scientific Instruments, 16 (12), 1223-1227.

[15] Rovera, G.D., Ducos, F., Zondy, J.J., Acef, O., Wallerand, J.P., Knight, J.C., Russell, P.S. (2002). Absolute frequency measurement of an I-2 stabilized Nd : YAG optical frequency standard. Measurement Science & Technology, 13 (6), 918-922.

[16] Lazar, J., Hrabina, J., Jedlicka, P., Cip, O. (2009). Absolute frequency shifts of iodine cells for laser stabilization. Metrologia, 46 (5), 450-456.

[17] Hrabina, J., Lazar, J., Hola, M., Cip, O. (2013). Frequency noise properties of lasers for interferometry in nanometrology. Sensors, 13 (2), 2206-2219.

[18] Lance, A.L., Seal, W.D., Labaar, F. (1982). Phase noise measurement systems. ISA Transactions, 21 (4), 37-44.

[19] Hrabina, J., Lazar, J., Hola, M., Cip, O. (2013). Investigation of short-term amplitude and frequency fluctuations of lasers for interferometry. Measurement Science Review, 13 (2), 63-69.

[20] Rerucha, S., Buchta, Z., Sarbort, M., Lazar, J., Cip, O. (2012). Detection of interference phase by digital computation of quadrature signals in homodyne laser interferometry. Sensors, 12 (10), 14095-14112.

[21] Smid, R., Cip, O., Lazar, J. (2008). Precise length etalon controlled by stabilized frequency comb. Measurement Science Review, 8 (5), 114-117.

[22] Hodges, J.T., Layer, H.P., Miller, W.W., Scace, G.E. (2004). Frequency-stabilized single-mode cavity ringdown apparatus for high-resolution absorption spectroscopy. Review of Scientific Instruments, 75 (4), 849-863.

[23] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Refractive index compensation in over-determined interferometric systems. Sensors, 12 (10), 14084-14094.

[24] Birch, K.P., Downs, M.J. (1994). Correction to the updated edlen equation for the refractive-index of air. Metrologia, 31 (4), 315-316.

[25] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Displacement interferometry with stabilization of wavelength in air. Optics Express, 20 (25), 27830-27837.

[26] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2011). Standing wave interferometer with stabilization of wavelength on air. tm-Technisches Messen, 78 (11), 484-488.

[27] Zhang, J., Lu, Z.H., Menegozzi, B., Wang, L.J. (2006). Application of frequency combs in the measurement of the refractive index of air. Review of Scientific Instruments, 77 (8).

[28] Hrabina, J., Lazar, J., Klapetek, P., Cip, O. (2011). Multidimensional interferometric tool for the local probe microscopy nanometrology. Measurement Science & Technology, 22 (9).

[29] Cao, H.J., Zang, E.J., Zhao, K., Zhang, X.B., Wu, Y.X., Shen, N.C. (1998). Frequency stabilization of a Nd:YAG laser to Doppler-broadened lines of iodine near 532 nm. In Conference on Precision Electromagnetic Measurements Digest, 6-10 July 1998. IEEE, 183-184.

[30] Lazar, J., Hrabina, J., Sery, M., Klapetek, P., Cip, O. (2012). Multiaxis interferometric displacement measurement for local probe microscopy. Central European Journal of Physics, 10 (1), 225-231.

[31] du Burck, F., Daussy, C., Amy-Klein, A., Goncharov, A.N., Lopez, O., Chardonnet, C., Wallerand, J.P. (2005). Frequency measurement of an Ar+ laser stabilized on narrow lines of molecular iodine at 501.7 nm. IEEE Transactions on Instrumentation and Measurement, 54 (2), 754-758.

[32] Wallerand, J.P., Robertsson, L., Ma, L.S., Zucco, M. (2006). Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequencydoubled Yb-doped fibre laser. Metrologia, 43 (3), 294-298.

[33] Osellame, R., Della Valle, G., Chiodo, N., Taccheo, S., Laporta, P., Svelto, O., Cerullo, G. (2008). Lasing in femtosecond laser written optical waveguides. Applied Physics A : Materials Science & Processing, 93 (1), 17-26.

[34] Chiodo, N., Du Burck, F., Hrabina, J., Candela, Y., Wallerand, J.P., Acef, O. (2013). CW frequency doubling of 1029 nm radiation using single pass bulk and waveguide PPLN crystals. Optics Communications, 311, 239-244.

[35] Chiodo, N., Du-Burck, F., Hrabina, J., Lours, M., Chea, E., Acef, O. (2014). Optical phase locking of two infrared continuous wave lasers separated by 100 THz. Optics Letters, 39 (10), 2936-2939.

[36] Hrabina, J., Jedlicka, P., Lazar, J. (2008). Methods for measurement and verification of purity of iodine cells for laser frequency stabilization. Measurement Science Review, 8 (5), 118-121.

[37] Fang, H.M., Wang, S.C., Liu, L.C., Cheng, W.Y., Wu, K.Y., Shy, J.T. (2006). Measurement of hyperfine splitting of molecular iodine at 532 nm by doublepassed acousto optic modulator frequency shifter. Japanese Journal of Applied Physics, 45, 2776-2779.

[38] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation of the I2 B state. I. - Theory. Journal de Physique, 42 (7), 937-947.

[39] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation of the I2 B state. II. - Experiments on natural and hyperfine predissociation. Journal de Physique, 42 (7), 949-959.

[40] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation of the I2 B state. III. - Experiments on magnetic predissociation. Journal de Physique, 42 (7), 961-978.

[41] Pique, J.P., Bacis, R., Hartmann, F., Sadeghi, N., Churassy, S. (1983). Hyperfine predissociation in the B state of iodine investigated through lifetime measurements of individual hyperfine sublevels. Journal de Physique, 44 (3), 347-351.

Measurement Science Review

The Journal of Institute of Measurement Science of Slovak Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.345
5-year IMPACT FACTOR: 1.253

CiteScore 2016: 1.88

SCImago Journal Rank (SJR) 2016: 0.495
Source Normalized Impact per Paper (SNIP) 2016: 1.419


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 15
PDF Downloads 6 6 5