Cite

[1] Mironov, A.V., Privalov, V.E., Savelev, S.K. (1997). Complete calculated atlas of the absorption spectrum of iodine-127 (B-X system of bands) and complex of programs for the tabulation of iodine lines. Optics and Spectroscopy, 82 (3), 332-333.Search in Google Scholar

[2] Salami, H., Ross, A.J. (2005). A molecular iodine atlas in ascii format. Journal of Molecular Spectroscopy, 233 (1), 157-159.10.1016/j.jms.2005.06.002Search in Google Scholar

[3] Simmons, J.D., Hougen, J.T. (1977). Atlas of I2 spectrum from 19 000 to 18 000 Cm-1. Journal of Research of the National Bureau of Standards, Section A : Physics and Chemistry, 81 (1), 25-80.10.6028/jres.081A.006Search in Google Scholar

[4] Cheng, W.Y., Chen, L.S., Yoon, T.H., Hall, J.L., Ye, J. (2002). Sub-Doppler molecular-iodine transitions near the dissociation limit (523-498 nm). Optics Letters, 27 (8), 571-573.10.1364/OL.27.000571Search in Google Scholar

[5] Quinn, T.J. (2003). Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001). Metrologia, 40 (2), 103-133.10.1088/0026-1394/40/2/316Search in Google Scholar

[6] Balhorn, R., Lebowsky, F., Kunzmann, H. (1972). Frequency stabilization of internal-mirror helium-neon lasers. Applied Optics, 11 (4), 742-744.10.1364/AO.11.000742Search in Google Scholar

[7] Nevsky, A.Y., Holzwarth, R., Reichert, et al. (2001). Frequency comparison and absolute frequency measurement of I-2-stabilized lasers at 532 nm. Optics Communications, 192 (3-6), 263-272.10.1016/S0030-4018(01)01190-7Search in Google Scholar

[8] Petru, F., Popela, B., Vesela, Z. (1993). Design and performance of compact iodine stabilized He-Ne lasers at lambda=633 nm with a short optical-resonator. Measurement Science & Technology, 4 (4), 506-512.10.1088/0957-0233/4/4/012Search in Google Scholar

[9] Sevcik, R., Guttenova, J. (2007). Primary length standard adjustment. In 15th Czech-Polish-Slovak Conference on Wave and Quantum Aspects of Contemporary Optics, Proc. SPIE 6609.Search in Google Scholar

[10] Galzerano, G., Bava, E., Bisi, M., Bertinetto, F., Svelto, C. (1999). Frequency stabilization of frequency-doubled Nd : YAG lasers at 532 nm by frequency modulation spectroscopy technique. IEEE Transactions on Instrumentation and Measurement, 48 (2), 540-543.10.1109/19.769653Search in Google Scholar

[11] Nyholm, K., Merimaa, M., Ahola, T., Lassila, A. (2003). Frequency stabilization of a diode-pumped Nd:Yag laser at 532 nm to iodine by using thirdharmonic technique. IEEE Transactions on Instrumentation and Measurement, 52 (2), 284-287.10.1109/TIM.2003.811679Search in Google Scholar

[12] Bartl, J., Guttenova, J., Jacko, V., Sevcik, R. (2007). Circuits for optical frequency stabilization of metrological lasers. In Measurement 2007 : 6th International Conference on Measurement. Bratislava : Institute of Measurement Science SAS, 131-134.Search in Google Scholar

[13] Hrabina, J., Petru, F., Jedlicka, P., Cip, O., Lazar, J. (2007). Purity of iodine cells and optical frequency shift of iodine-stabilized He-Ne lasers. Optoelectronics and Advanced Materials-Rapid Communications, 1 (5), 202-206.Search in Google Scholar

[14] Ciddor, P.E., Duffy, R.M. (1983). Two-mode frequency-stabilized He-Ne (633 nm) lasers : Studies of short- and long-term stability. Journal of Physics E : Scientific Instruments, 16 (12), 1223-1227.Search in Google Scholar

[15] Rovera, G.D., Ducos, F., Zondy, J.J., Acef, O., Wallerand, J.P., Knight, J.C., Russell, P.S. (2002). Absolute frequency measurement of an I-2 stabilized Nd : YAG optical frequency standard. Measurement Science & Technology, 13 (6), 918-922.10.1088/0957-0233/13/6/313Search in Google Scholar

[16] Lazar, J., Hrabina, J., Jedlicka, P., Cip, O. (2009). Absolute frequency shifts of iodine cells for laser stabilization. Metrologia, 46 (5), 450-456.10.1088/0026-1394/46/5/008Search in Google Scholar

[17] Hrabina, J., Lazar, J., Hola, M., Cip, O. (2013). Frequency noise properties of lasers for interferometry in nanometrology. Sensors, 13 (2), 2206-2219. 10.3390/s130202206364941523435049Search in Google Scholar

[18] Lance, A.L., Seal, W.D., Labaar, F. (1982). Phase noise measurement systems. ISA Transactions, 21 (4), 37-44.Search in Google Scholar

[19] Hrabina, J., Lazar, J., Hola, M., Cip, O. (2013). Investigation of short-term amplitude and frequency fluctuations of lasers for interferometry. Measurement Science Review, 13 (2), 63-69.10.2478/msr-2013-0014Search in Google Scholar

[20] Rerucha, S., Buchta, Z., Sarbort, M., Lazar, J., Cip, O. (2012). Detection of interference phase by digital computation of quadrature signals in homodyne laser interferometry. Sensors, 12 (10), 14095-14112.10.3390/s121014095354560923202038Search in Google Scholar

[21] Smid, R., Cip, O., Lazar, J. (2008). Precise length etalon controlled by stabilized frequency comb. Measurement Science Review, 8 (5), 114-117.Search in Google Scholar

[22] Hodges, J.T., Layer, H.P., Miller, W.W., Scace, G.E. (2004). Frequency-stabilized single-mode cavity ringdown apparatus for high-resolution absorption spectroscopy. Review of Scientific Instruments, 75 (4), 849-863.10.1063/1.1666984Search in Google Scholar

[23] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Refractive index compensation in over-determined interferometric systems. Sensors, 12 (10), 14084-14094.10.3390/s121014084354560823202037Search in Google Scholar

[24] Birch, K.P., Downs, M.J. (1994). Correction to the updated edlen equation for the refractive-index of air. Metrologia, 31 (4), 315-316.10.1088/0026-1394/31/4/006Search in Google Scholar

[25] Lazar, J., Hola, M., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2012). Displacement interferometry with stabilization of wavelength in air. Optics Express, 20 (25), 27830-27837.10.1364/OE.20.02783023262728Search in Google Scholar

[26] Lazar, J., Cip, O., Cizek, M., Hrabina, J., Buchta, Z. (2011). Standing wave interferometer with stabilization of wavelength on air. tm-Technisches Messen, 78 (11), 484-488.10.1524/teme.2011.0201Search in Google Scholar

[27] Zhang, J., Lu, Z.H., Menegozzi, B., Wang, L.J. (2006). Application of frequency combs in the measurement of the refractive index of air. Review of Scientific Instruments, 77 (8).10.1063/1.2239036Search in Google Scholar

[28] Hrabina, J., Lazar, J., Klapetek, P., Cip, O. (2011). Multidimensional interferometric tool for the local probe microscopy nanometrology. Measurement Science & Technology, 22 (9).10.1088/0957-0233/22/9/094030Search in Google Scholar

[29] Cao, H.J., Zang, E.J., Zhao, K., Zhang, X.B., Wu, Y.X., Shen, N.C. (1998). Frequency stabilization of a Nd:YAG laser to Doppler-broadened lines of iodine near 532 nm. In Conference on Precision Electromagnetic Measurements Digest, 6-10 July 1998. IEEE, 183-184.10.1117/12.344142Search in Google Scholar

[30] Lazar, J., Hrabina, J., Sery, M., Klapetek, P., Cip, O. (2012). Multiaxis interferometric displacement measurement for local probe microscopy. Central European Journal of Physics, 10 (1), 225-231.10.2478/s11534-011-0093-5Search in Google Scholar

[31] du Burck, F., Daussy, C., Amy-Klein, A., Goncharov, A.N., Lopez, O., Chardonnet, C., Wallerand, J.P. (2005). Frequency measurement of an Ar+ laser stabilized on narrow lines of molecular iodine at 501.7 nm. IEEE Transactions on Instrumentation and Measurement, 54 (2), 754-758.Search in Google Scholar

[32] Wallerand, J.P., Robertsson, L., Ma, L.S., Zucco, M. (2006). Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequencydoubled Yb-doped fibre laser. Metrologia, 43 (3), 294-298.Search in Google Scholar

[33] Osellame, R., Della Valle, G., Chiodo, N., Taccheo, S., Laporta, P., Svelto, O., Cerullo, G. (2008). Lasing in femtosecond laser written optical waveguides. Applied Physics A : Materials Science & Processing, 93 (1), 17-26.10.1007/s00339-008-4644-6Search in Google Scholar

[34] Chiodo, N., Du Burck, F., Hrabina, J., Candela, Y., Wallerand, J.P., Acef, O. (2013). CW frequency doubling of 1029 nm radiation using single pass bulk and waveguide PPLN crystals. Optics Communications, 311, 239-244.10.1016/j.optcom.2013.08.020Search in Google Scholar

[35] Chiodo, N., Du-Burck, F., Hrabina, J., Lours, M., Chea, E., Acef, O. (2014). Optical phase locking of two infrared continuous wave lasers separated by 100 THz. Optics Letters, 39 (10), 2936-2939.10.1364/OL.39.00293624978241Search in Google Scholar

[36] Hrabina, J., Jedlicka, P., Lazar, J. (2008). Methods for measurement and verification of purity of iodine cells for laser frequency stabilization. Measurement Science Review, 8 (5), 118-121.10.2478/v10048-008-0025-8Search in Google Scholar

[37] Fang, H.M., Wang, S.C., Liu, L.C., Cheng, W.Y., Wu, K.Y., Shy, J.T. (2006). Measurement of hyperfine splitting of molecular iodine at 532 nm by doublepassed acousto optic modulator frequency shifter. Japanese Journal of Applied Physics, 45, 2776-2779.10.1143/JJAP.45.2776Search in Google Scholar

[38] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation of the I2 B state. I. - Theory. Journal de Physique, 42 (7), 937-947.10.1051/jphys:01981004207093700Search in Google Scholar

[39] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation of the I2 B state. II. - Experiments on natural and hyperfine predissociation. Journal de Physique, 42 (7), 949-959.10.1051/jphys:01981004207093700Search in Google Scholar

[40] Vigue, J., Broyer, M., Lehmann, J.C. (1981). Natural hyperfine and magnetic predissociation of the I2 B state. III. - Experiments on magnetic predissociation. Journal de Physique, 42 (7), 961-978.10.1051/jphys:01981004207093700Search in Google Scholar

[41] Pique, J.P., Bacis, R., Hartmann, F., Sadeghi, N., Churassy, S. (1983). Hyperfine predissociation in the B state of iodine investigated through lifetime measurements of individual hyperfine sublevels. Journal de Physique, 44 (3), 347-351. 10.1051/jphys:01983004403034700Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing