Influence of Bi on dielectric properties of GaAs1−xBix alloys

Open access

Abstract

Pure GaAs and GaAs1−xBix alloys with different Bi ratios (1 %, 2.5 %, 3.5 %) fitted with silver contacts were measured with a dielectric spectroscopy device. Dielectric characterization was performed at room temperature in the frequency range of 0.1 Hz to 1 MHz. GaAs exhibits three relaxation regions corresponding to space-charge, dipolar and ionic polarizations in sequence with increasing frequency while GaAs1−xBix samples show only a broad dipolar polarization in the same frequency range. This result proves the filling of the lattice with Bi through making a new bonding reducing the influence of ionic polarization. This finding supports the previous results concerning optical properties of GaAs1−xBix, presented in the literature.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Tait C.R. Yan L. Millunchick J.M. J. Cryst. Growth 493 (2018) 20.

  • [2] Mazur Y.I. Dorogan V.G. Dias L. Fan D. Schmidbauer M. Ware M.E. Marques G.E. J. Lumin. 188 (2017) 209.

  • [3] Erol A. Akalin E. Kara K. Aslan M. Bahrami-Yekta V. Lewis R.B. Tiedje T. J. Alloy. Compd. 722 (2017) 339.

  • [4] Pettinari G. Polimeni A. Capizzi M. Blokland J.H. Christianen P.C. M. Maan J.C. Tiedje T. Appl. Phys. Lett. 92 (2018) 262105.

  • [5] Aleknavičius J. Pozingytė E. Butkutė R. Krotkus A. Tamulaitis G. Lith. J. Phys. 58 (2018) 108.

  • [6] Achour H. Louhibi S. Amrani B. Tebboune A. Sekkal N. Superlattice. Microst. 44 (2008) 223.

  • [7] Richards R.D. Mellor A. Harun F. Cheong J.S. Hylton N.P. Wilson T. David J.P.R. Sol. Energ. Mat. Sol. C. 172 (2017) 238.

  • [8] Pettinari G. Polimeni A. Capizzi M. Engelkamp H. Christianen P. Maan J.C. Tiedje T. Phys. Status Solidi B 250 (2013) 779.

  • [9] Pashchenko A.S. Lunin L.S. Chebotarev S.N. Lunina M.L. Semiconductors 52 (2018) 729.

  • [10] Prados A. Ranchal R. J. Phys. Chem. C 122 (2018) 8874.

  • [11] Prados A. Ranchal R. J. Phys. Chem. C 122 (2018) 8886.

  • [12] Xu R. Zhao S. Yang K. Li G. Li T. Li D. Opt. Express 26 (2018) 8542.

  • [13] El-Nahass M.M. Attia A.A. Ali H.A.M. Salem G.F. Ismail M.I. J. Electron. Mater. 47 (2018) 1.

  • [14] Chung C.Y. Chang Y.S. Chen G.J. Chung C.C. Huang T.W. Solid State Commun. 145 (2008) 212.

  • [15] Wu H. Lin Y.B. Gong J.J. Zhang F. Zeng M. Qin M.H. Liu J.M. J. Phys. D Appl. Phys. 46 (2013) 145001.

  • [16] Zhou L. Vilarinho P.M. Baptista J.L. J. Eur. Ceram. Soc. 21 (2001) 531.

  • [17] Adamczyk M. Ujma Z. Szymczak L. Soszyński A. Koperski J. Mater. Sci. Eng. B-Adv. 136 (2007) 170.

  • [18] Chai Y.L. His C.S. Lin Y.T. Chang Y.S. J. Alloy. Compd. 588 (2014) 248.

  • [19] Xu L.F. Qi P.B. Chen S.S. Wang R.L. Yang C.P. Mater. Sci. Eng. B-Adv. 177 (2012) 494.

  • [20] Singh L. Kim I.W. Sin B.C. Ullah A. Woo S.K. Lee Y. Mat. Sci. Semicon. Proc. 31 (2015) 386.

  • [21] Roy A.K. Prasad K. Prasad A. Process. Appl. Ceram. 7 (2013) 81.

  • [22] Liu J. Duan C.G. Yin W.G. Mei W.N. Smith R.W. Hardy J.R. J. Chem. Phys. 119 (2003) 2812.

  • [23] Sun S. Chen W. Fang L. Cheng N. Xiao Z. Zhao Z. Lu Y. Ceram. Int. 44 (2018) 9942.

  • [24] Zangina T. Hassan J. Matori K. A. See A. Alibe I. M. Umar S. J. Aust. Ceram. Soc. 54 (2018) 307.

  • [25] Gondaliya N. Kanchan D.K. Sharma P. Jayswal M.S. Pant M. Integr. Ferroelectr. 119 (2010) 1.

  • [26] Zhi Y. Chen A. Vilarinho P.M. Mantas P.Q. Baptista J.L. J. Eur. Ceram. Soc. 18 (1998) 1621.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 78 78 12
PDF Downloads 51 51 14