Study on process development and property evaluation of sol-gel derived magnesia stabilized zirconia minispheres

Open access

Abstract

In order to overcome limitations in the processing parameters of powder compaction method, a novel processing technique based on sol-gel route has been developed to produce near-net-shaped prototype fine zirconia minispheres with required properties that could potentially be used as grinding media. Impact of magnesia concentration and sintering temperature on the final product has been analyzed in detail. Zirconia minispheres have been characterized to establish a correlation between physical, structural and mechanical properties. Sintering temperature, soaking period, heating rate and viscosity of the sol apparently influence the characteristics of the magnesia stabilized zirconia minispheres. The phase identification, density variation, chemical decomposition, functional group specification, surface area, porosity, shrinkage and microstructural features of the dried and sintered final product have been studied. It has been observed that magnesia content, sintering temperature, density and the grain size of the sintered minispheres have a significant impact on the mechanical properties of the final product.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Judes J. Kamaraj V. J. Sol-Gel Sci. Techn. 49 (2009) 159. http://dx.doi.org/10.1007/s10971-008-1853-6

  • [2] Judes J. Kamaraj V. Mater. Sci.-Poland 27(2) (2009) 407.

  • [3] Wang J.A. Valenzuela M.A. Salmones J. Vazquez A. Garcia-ruiz A. Bokhimi X. Catal. Today 68 (2001) 21. http://dx.doi.org/10.1016/S0920-5861(01)00319-4

  • [4] Mcmeeking R.M. Evans A. G. J. Am. Ceram. Soc. 65(5) (1982) 242. http://dx.doi.org/10.1111/j.1151-2916.1982.tb10426.x

  • [5] Zhi-Guo Shi. Li Xu. Micropor. Mesopor. Mat. 94 (2006) 34. http://dx.doi.org/10.1016/j.micromeso.2006.03.017

  • [6] Oleg Vasylkiv Yoshio Sakka J. Am. Ceram. Soc. 83(9) (2000) 2196.

  • [7] Tohge N. Moore G.S. Mackenzie J.D. J. Non-Cryst. Solids 63 (1984) 65. http://dx.doi.org/10.1016/0022-3093(84)90389-2

  • [8] Li M. Messing L. Ceramic Transactions: Ceramic Powder Science III American Ceramic Society 1990 129.

  • [9] Etienne J. Larbot A. Guizard C. Cot L. Alary J.A. J. Non-Cryst. Solids. 125 (1990) 224. http://dx.doi.org/10.1016/0022-3093(90)90852-D

  • [10] Callon C.J. Goldie D.M. Dibb H.F. Cairns J.A. Paton J. J. Mater. Sci. Lett. 19 (2000) 1689. http://dx.doi.org/10.1023/A:1006789826517

  • [11] Chakrabarty P.K. Chatterjee M. Naskar M.K. Siladitya B. Gangu D. J. Eur. Ceram. Soc. 21 (2001) 355. http://dx.doi.org/10.1016/S0955-2219(00)00196-5

  • [12] Pullar R.C Taylor M.D. Bhattacharya A.K. J. Eur. Ceram. Soc. 21 (2001) 19. http://dx.doi.org/10.1016/S0955-2219(00)00178-3

  • [13] Bhuvaneswari M.S. Selvasekarapandian S. Vijayakumar M. Hirankumar G. Ramprasad G. Subramanian R. Angelo P.C. Ceram. Int. 30 (2004) 1631. http://dx.doi.org/10.1016/j.ceramint.2003.12.171

  • [14] Ding J. Tsuzuki T. Mccormick P. Nanostruct. Mater. 8 (1997) 75. http://dx.doi.org/10.1016/S0965-9773(97)00067-6

  • [15] Hannink R.H.J. J. Mater. Sci. 18 (1983) 457. http://dx.doi.org/10.1007/BF00560635

  • [16] Porter D.L. Hever A.H. Acta Metall. 27 (1979) 1649. http://dx.doi.org/10.1016/0001-6160(79)90046-4

  • [17] Gangadevi T. Subbarao M. Kutty T.R.N. Indian J. Chem. A 19 (1980) 303.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.918
5-year IMPACT FACTOR: 0.916

CiteScore 2018: 1.01

SCImago Journal Rank (SJR) 2018: 0.275
Source Normalized Impact per Paper (SNIP) 2018: 0.561

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 260 108 1
PDF Downloads 114 69 1