Open Access

Study on process development and property evaluation of sol-gel derived magnesia stabilized zirconia minispheres

 and    | Jul 22, 2014

Cite

In order to overcome limitations in the processing parameters of powder compaction method, a novel processing technique based on sol-gel route has been developed to produce near-net-shaped prototype fine zirconia minispheres with required properties that could potentially be used as grinding media. Impact of magnesia concentration and sintering temperature on the final product has been analyzed in detail. Zirconia minispheres have been characterized to establish a correlation between physical, structural and mechanical properties. Sintering temperature, soaking period, heating rate and viscosity of the sol apparently influence the characteristics of the magnesia stabilized zirconia minispheres. The phase identification, density variation, chemical decomposition, functional group specification, surface area, porosity, shrinkage and microstructural features of the dried and sintered final product have been studied. It has been observed that magnesia content, sintering temperature, density and the grain size of the sintered minispheres have a significant impact on the mechanical properties of the final product.

eISSN:
2083-134X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties