Mineralogy, chemical composition and leachability of ash from biomass combustion and biomass–coal co-combustion

Open access


Ash samples from biomass combustion or co-combustion with coal were analysed. The aim of this study of ash was to determine its mineral and chemical composition, and the chemical composition of solutions obtained during one-step water extraction. Besides the chemical analysis, X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectrometry (SEM-EDS) were applied.

The mineral and chemical composition of ash samples differ strongly. The content of heavy metals in the ash is generally low, but in some samples the limits of the content of some elements determined for fertilizers or soil amendments are exceeded. The relatively poor correlation between the concentration in leachate and bulk content in ash indicates that numerous elements are present in different forms in the studied samples. The results indicate that the potential use of biomass ash, or ash from biomass–coal co-combustion, requires complex studies that explore ash and leachates.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Baba A. & Kaya A. (2004). Leaching characteristics of fly ash from thermal power plants of Soma and Tunçbilek Turkey. Environmental Monitoring and Assessment 91 171-181. DOI: 10.1023/B:EMAS.0000009234.42446.d3.

  • Bartoňová L. Čech B. Ruppenthalová L. Majvelderová V. Juchelková D. & Klika Z. (2012). Effect of unburned carbon content in fly ash on the retention of 12 elements out of coal-combustion flue gas. Journal of Environmental Sciences 24 1624-1629. DOI: 10.1016/S1001-0742(11)60981-9.

  • Bogush A. A. Stegemann J. A. Williams R. & Wood I. G. (2018). Element speciation in UK biomass power plant residues based on composition mineralogy microstructure and leaching. Fuel 211 712-725. DOI: 10.1016/j.fuel.2017.09.103.

  • Bonner I. J. Smith W. A. Einerson J. J. & Kenney K. L. (2014). Impact of harvest equipment on ash variability of baled corn stover biomass for bioenergy. Bioenergy Research 7 845-855. DOI 10.1007/s12155-014-9432-x.

  • Ciesielczuk T. Kusza G. & Nemś A. (2011). Nawożenie popiołami z termicznego przekształcania biomasy źródłem pierwiastków śladowych dla gleb. Ochrona Środowiska i Zasobów Mineralnych 49 219-227.

  • Dahl O. Nurmesniemi H. Pöykiö R. & Watkins G. (2010). Heavy metal concentrations in bottom ash and fly ash fractions from a large-sized (246 MW) fluidized bed boiler with respect to their Finnish forest fertilizer limit values. Fuel Processing Technology 91 1634-1639. DOI: 10.1016/j.fuproc.2010.06.012.

  • Degereji M. U. Gubba S. R. Ingham D. B. Ma L. Pourkashanian M. Williams A. & Williamson J. (2013). Predicting the slagging potential of co-fired coal with sewage sludge and wood biomass. Fuel 108 550-556. DOI: 10.1016/j.fuel.2012.12.030.

  • Demeyer A. Voundi Nkana J. C. & Verloo M. G. (2001). Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresource Technology 77 287-295. DOI: 10.1016/S0960-8524(00)00043-2.

  • Demirbas A. (2005). Potential applications of renewable energy sources biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science 31 171-192. DOI: 10.1016/j.pecs.2005.02.002.

  • Díaz-Somoano M. Unterberger S. & Hein K. R. G.(2006). Prediction of trace element volatility during cocombustion processes. Fuel 85 1087-1093. DOI:10.1016/j.fuel.2005.10.013.

  • Freire M. Lopes H. & Tarelho L.A.C. (2015). Critical aspects of biomass ashes utilization in soils: Composition leachability PAH and PCDD/F. Waste Management 46 304-315. DOI: 10.1016/j.wasman.2015.08.036.

  • Hansen H. K. Pedersen A. J. Ottosen L. M. & Villumsen A. (2001). Speciation and mobility of cadmium in straw and wood combustion fly ash. Chemosphere 45 123-128. DOI: 10.1016/S0045-6535(01)00026-1.

  • Ingerslev M. Skov S. Sevel L. & Pedersen L.B. (2011). Element budgets of forest biomass combustion and ash fertilisation - a Danish case-study. Biomass and Bioenergy 35 2697-2704. DOI: 10.1016/j.biombioe.2011.03.018.

  • Izquierdo M. Moreno N. Font O. Querol X. Alvarez E. Antenucci D. Nugteren H. Luna Y. & Fernández-Pereira C. (2008). Influence of the co-firing on the leaching of trace pollutants from coal ash. Fuel 87 1958-1966. DOI:10.1016/j.fuel.2007.11.002.

  • Jiménez S. & Ballester J. (2005). Effect of co-firing on the properties of submicron aerosols from biomass combustion. Proceedings of the Combustion Institute 30 2965-2972. DOI: 10.1016/j.proci.2004.08.099.

  • Johansson L. S. Tullin C. Leckner B. & Sjövall P. (2003). Particle emissions from biomass combustion in small combustors. Biomass and Bioenergy 25 435-446. DOI: 10.1016/S0961-9534(03)00036-9.

  • Juda-Rezler K. & Kowalczyk D. (2013). Size distribution and trace elements contents of Coal fly ash from pulverized boilers. Polish Journal of Environmental Studies 22 25-40.

  • Kalembkiewicz J. & Chmielarz U. (2012). Ashes from co-combustion of coal and biomass: New industrial wastes. Resources Conservation and Recycling 69 109-121. DOI: 10.1016/j.resconrec.2012.09.010.

  • Ketris M. P. & Yudovich Ya. E. (2009). Estimation of Clarkes for Carbonaceous biolithes: World for trace element content in black shales and coals. International Journal of Coal Geology 78 135-148. DOI: 10.1016/j.coal.2009.01.002.

  • Khanra S. Mallick D Dutta S. N. Chaudhuri S. K. (1998). Studies on the phase mineralogy and leaching characteristics of coal fly ash. Water Air and Soil Pollution 107 251-275. DOI: 10.1023/A:1004947519170.

  • Komonweeraket K. Cetin B. Aydilek A. H. Benson C. H. & Edil T.B. (2015). Effects of pH on the leaching mechanisms of elements from fly ash mixed soils. Fuel 140 788-802. DOI: 10.1016/j.fuel.2014.09.068.

  • Kovacs H. Szemmelveisz K. & Palotas A.B. (2013). Solubility analysis and disposal options of combustion residues from plants grown on contaminated mining area. Environmental Science and Pollution Research 20 7917-7925. DOI 10.1007/s11356-013-1673-2.

  • Lanzerstorfer C. (2015). Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants. Journal of Environmental Sciences 30 191-197. DOI:10.1016/j.jes.2014.08.021.

  • Lee J. W. Hawkins B. Day D. M. & Reicosky D.C. (2010). Sustainability: the capacity of smokeless biomass pyrolysis for energy production global carbon capture and sequestration. Energy and Environmental Sciences 11 1695-1705. DOI: 10.1039/c004561f.

  • Li L. Yu C. Bai J. Wang Q. & Luo Z. (2012). Heavy metal characterization of circulating fluidized bed derived biomass ash. Journal of Hazardous Materials 233-234 41-47. DOI: 10.1016/j.jhazmat.2012.06.053.

  • López R. Díaz M. J. & González-Pérez J. A. (2018). Extra CO2 sequestration following reutilization of biomass ash. Science of the Total Environment 625 1013-1020. DOI: 10.1016/j.scitotenv.2017.12.263.

  • Mardon S. M. Hower J. C. O’Keefe J. M. K. Marks M. N. & Hedges D. H. (2008). Coal combustion byproduct quality at two stoker boilers: Coal source vs. fly ash collection system design. International Journal of Coal Petrology 75 284-254. DOI: 10.1016/j.coal.2008.07.004.

  • Michalik M. Pogrzeba M. & Wilczyńska-Michalik W. (2013). Biomass combustion – a possible source of environmental pollution? Goldschmidt 2013 Conference Abstracts Mineralogical Magazine 77(5) 1753.

  • Modolo R. C. E. Tarelho L. A. C. Teixeira E. R. Ferreira V. M. & Labrincha J. A. (2014). Treatment and use of bottom bed waste in biomass fluidized bed combustors. Fuel Processing Technology 125 170-181. DOI: 10.1016/j.fuproc.2014.03.040.

  • Moreno N. Querol X. Andrés J. M. Stanton K. Towler M. Nugteren H. Janssen Jurkovicová M. & Jones R. (2005). Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel 84 1351-1363. DOI:10.1016/j.fuel.2004.06.038.

  • Narodoslawsky M. & Obernberger I. (1996). From waste to raw material – the route from biomass to wood ash for cadmium and other heavy metals. Journal of Hazardous Materials 50 157-168. DOI: 10.1016/0304-3894(96)01785-2.

  • Nzihou A. & Stanmore B. R. (2013). The fate of heavy metals during combustion and gasification of contaminated biomass – A brief review. Journal of Hazardous Materials 256-257 56-66. DOI: 10.1016/j.jhazmat.2013.02.050.

  • Nzihou A. & Stanmore B. R. 2015. The formation of aerosols during the co-combustion of coal and biomass. Waste Biomass Valorization 6 947-957. DOI 10.1007/s12649-015-9390-3.

  • Ogata F. Tominaga H. Yabutani H. Taga A. & Kawasaki N. (2011). Recovery of molybdenum from fly ash by gibbsite. Toxicological and Environmental Chemistry 93 635–642. DOI: 10.1080/02772248.2011.558508.

  • Parzentny H. R. & Lewińska-Preis L. (2006). The role of sulphide and carbonate minerals in the concentration of chalcophile elements in the bituminous coal seams of a paralic series (Upper Carboniferous) in the Upper Silesian Coal Basin (USCB) Poland. Chemie der Erde 66 227-247. DOI:10.1016/j.chemer.2005.04.001.

  • Priyanto D. E. Ueno S. Sato N. Kasai H. Tanoue T. & Fukushima H. (2016). Ash transformation by cofiring of coal with high ratios of woody biomass and effect on slagging propensity. Fuel 174 172-179. DOI: 10.1016/j.fuel.2016.01.072.

  • Pronobis M. (2006). The influence of biomass co-combustion on boiler fouling and efficiency. Fuel 85 474-480. DOI: 10.1016/j.fuel.2005.08.015.

  • Querol X. Juan R. Lopez-Soler A. Fernandez-Turiel J. L. & Ruiz C. R. (1996). Mobility of trace elements from coal and combustion wastes. Fuel 7 821-838. DOI: 10.1016/0016-2361(96)00027-0.

  • Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 18 czerwca 2008 r. w sprawie wykonania niektórych przepisów ustawy o nawozach i nawożeniu. Dziennik Ustaw 119 Poz. 765 6515-6520.

  • Rozporządzenie Ministra z dnia 27 listopada 2002 r. w sprawie wymagań jakim powinny odpowiadać wody powierzchniowe wykorzystywane do zaopatrzenia ludności w wodę przeznaczoną do spożycia. Dziennik Ustaw 204 Poz. 1728 12738-12751.

  • Steenari B.-M. Karlsson L. G. & Lindqvist O. (1999). Evaluation of the leaching characteristics of wood ash and the influence of ash agglomeration. Biomass and Bioenergy 16 119-136. DOI: 10.1016/S0961-9534(98)00070-1.

  • Supancic K. Obernberger I. Kienzl N. & Arich A. (2014). Conversion and leaching characteristics of biomass ashes during outdoor storage - Results of laboratory tests. Biomass and Bioenergy 61 211-226. DOI: 10.1016/j.biombioe.2013.12.014.

  • Świetlik R. Trojanowska M. & Rabek P. (2012). Distribution patterns of Cd Cu Mn Pb and Zn in wood fly ash emitted from domestic boilers. Chemical Speciation and Bioavailability 25 63-70. DOI: 10.3184/095422912X13497968675047.

  • Tan Z. & Lagerkvist. A. (2011). Phosphorus recovery from the biomass ash: A review. Renewable and Sustainable Energy Reviews 15 3588-3602. DOI: 10.1016/j.rser.2011.05.016.

  • Vassilev S. V. & Vassileva C. G. (2007). A new approach for the classification of coal fly ashes based on their origin composition properties and behavior. Fuel 86 1490-1512. DOI:10.1016/j.fuel.2006.11.020.

  • Vassilev S. V. Baxter D. Andersen L. K. & Vassileva C.G. (2013a). An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 105 40-76. DOI: 10.1016/j.fuel.2012.09.041.

  • Vassilev S. V. Baxter D. Andersen L. K. & Vassileva C. G. (2013b). An overview of the composition and application of biomass ash. Part 2. Potential utilisation technological and ecological advantages and challenges. Fuel 105 19-39. DOI: 10.1016/j.fuel.2012.10.001.

  • Vassilev S. V. Baxter D. & Vassileva C. G. (2014). An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types. Fuel 117 152-183. DOI: 10.1016/j.fuel.2013.09.024.

  • Wilczyńska-Michalik W. & Michalik M. (2016). Trace elements in biomass fuel and biomass ash – a comparison with coal and coal ash. Goldschmidt Conference Abstracts 3412.

  • Wiśniewski G. Michałowska-Knap K. & Arcipowska A. (2012). O niezrównoważonym wykorzystaniu odnawialnych zasobów energii w Polsce i patologii w systemie wsparcia OZE Propozycje zmian podejścia do promocji OZE i kierunków wykorzystania zasobów biomasy. Instytut Energetyki Odnawialnej (EC BREC IEO) Warszawa 1-29.

  • Zheng Y. Peter Jensen A. Jensen A. D. Sander B. & Junker H. (2007). Ash transformation during co-firing coal and straw. Fuel 86(7-8) 1008-1020. DOI: 10.1016/j.fuel.2006.10.008.

Impact Factor

CiteScore 2018: 0.48

SCImago Journal Rank (SJR) 2018: 0.185
Source Normalized Impact per Paper (SNIP) 2018: 0.14

Cited By
Gesamte Zeit Letztes Jahr Letzte 30 Tage
Abstract Views 0 0 0
Full Text Views 136 136 11
PDF Downloads 131 131 21