Open Access

Mineralogy, chemical composition and leachability of ash from biomass combustion and biomass–coal co-combustion


Cite

Baba, A., & Kaya, A. (2004). Leaching characteristics of fly ash from thermal power plants of Soma and Tunçbilek, Turkey. Environmental Monitoring and Assessment, 91, 171-181. DOI: 10.1023/B:EMAS.0000009234.42446.d3.10.1023/B:EMAS.0000009234.42446.d3Open DOISearch in Google Scholar

Bartoňová, L., Čech, B., Ruppenthalová, L., Majvelderová, V., Juchelková, D., & Klika, Z. (2012). Effect of unburned carbon content in fly ash on the retention of 12 elements out of coal-combustion flue gas. Journal of Environmental Sciences, 24, 1624-1629. DOI: 10.1016/S1001-0742(11)60981-9.10.1016/S1001-0742(11)60981-9Open DOISearch in Google Scholar

Bogush, A. A., Stegemann, J. A., Williams, R., & Wood I. G. (2018). Element speciation in UK biomass power plant residues based on composition, mineralogy, microstructure and leaching. Fuel, 211, 712-725. DOI: 10.1016/j.fuel.2017.09.103.10.1016/j.fuel.2017.09.103Open DOISearch in Google Scholar

Bonner, I. J., Smith, W. A., Einerson, J. J., & Kenney, K. L. (2014). Impact of harvest equipment on ash variability of baled corn stover biomass for bioenergy. Bioenergy Research, 7, 845-855. DOI 10.1007/s12155-014-9432-x.10.1007/s12155-014-9432-xOpen DOISearch in Google Scholar

Ciesielczuk, T., Kusza, G., & Nemś, A. (2011). Nawożenie popiołami z termicznego przekształcania biomasy źródłem pierwiastków śladowych dla gleb. Ochrona Środowiska i Zasobów Mineralnych, 49, 219-227.Search in Google Scholar

Dahl, O., Nurmesniemi, H., Pöykiö, R., & Watkins, G. (2010). Heavy metal concentrations in bottom ash and fly ash fractions from a large-sized (246 MW) fluidized bed boiler with respect to their Finnish forest fertilizer limit values. Fuel Processing Technology, 91, 1634-1639. DOI: 10.1016/j.fuproc.2010.06.012.10.1016/j.fuproc.2010.06.012Open DOISearch in Google Scholar

Degereji, M. U., Gubba, S. R., Ingham, D. B., Ma, L., Pourkashanian, M., Williams, A., & Williamson, J. (2013). Predicting the slagging potential of co-fired coal with sewage sludge and wood biomass. Fuel, 108, 550-556. DOI: 10.1016/j.fuel.2012.12.030.10.1016/j.fuel.2012.12.030Open DOISearch in Google Scholar

Demeyer, A., Voundi Nkana, J. C., & Verloo, M. G. (2001). Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresource Technology, 77, 287-295. DOI: 10.1016/S0960-8524(00)00043-2.10.1016/S0960-8524(00)00043-2Open DOISearch in Google Scholar

Demirbas, A. (2005). Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science, 31, 171-192. DOI: 10.1016/j.pecs.2005.02.002.10.1016/j.pecs.2005.02.002Open DOISearch in Google Scholar

Díaz-Somoano, M., Unterberger, S., & Hein, K. R. G.(2006). Prediction of trace element volatility during cocombustion processes. Fuel, 85, 1087-1093. DOI:10.1016/j.fuel.2005.10.013.10.1016/j.fuel.2005.10.013Search in Google Scholar

Freire, M., Lopes, H., & Tarelho, L.A.C. (2015). Critical aspects of biomass ashes utilization in soils: Composition, leachability, PAH and PCDD/F. Waste Management, 46, 304-315. DOI: 10.1016/j.wasman.2015.08.036.10.1016/j.wasman.2015.08.03626344913Open DOISearch in Google Scholar

Hansen, H. K., Pedersen, A. J., Ottosen, L. M., & Villumsen, A. (2001). Speciation and mobility of cadmium in straw and wood combustion fly ash. Chemosphere, 45, 123-128. DOI: 10.1016/S0045-6535(01)00026-1.10.1016/S0045-6535(01)00026-1Open DOISearch in Google Scholar

Ingerslev, M., Skov, S., Sevel, L., & Pedersen, L.B. (2011). Element budgets of forest biomass combustion and ash fertilisation - a Danish case-study. Biomass and Bioenergy, 35, 2697-2704. DOI: 10.1016/j.biombioe.2011.03.018.10.1016/j.biombioe.2011.03.018Open DOISearch in Google Scholar

Izquierdo, M., Moreno, N., Font, O., Querol, X., Alvarez, E., Antenucci, D., Nugteren, H., Luna, Y., & Fernández-Pereira, C. (2008). Influence of the co-firing on the leaching of trace pollutants from coal ash. Fuel, 87, 1958-1966. DOI:10.1016/j.fuel.2007.11.002.10.1016/j.fuel.2007.11.002Open DOISearch in Google Scholar

Jiménez, S., & Ballester, J. (2005). Effect of co-firing on the properties of submicron aerosols from biomass combustion. Proceedings of the Combustion Institute, 30, 2965-2972. DOI: 10.1016/j.proci.2004.08.099.10.1016/j.proci.2004.08.099Open DOISearch in Google Scholar

Johansson, L. S., Tullin, C., Leckner, B., & Sjövall, P. (2003). Particle emissions from biomass combustion in small combustors. Biomass and Bioenergy, 25, 435-446. DOI: 10.1016/S0961-9534(03)00036-9.10.1016/S0961-9534(03)00036-9Open DOISearch in Google Scholar

Juda-Rezler, K., & Kowalczyk, D. (2013). Size distribution and trace elements contents of Coal fly ash from pulverized boilers. Polish Journal of Environmental Studies, 22, 25-40.Search in Google Scholar

Kalembkiewicz, J., & Chmielarz, U. (2012). Ashes from co-combustion of coal and biomass: New industrial wastes. Resources, Conservation and Recycling, 69, 109-121. DOI: 10.1016/j.resconrec.2012.09.010.10.1016/j.resconrec.2012.09.010Open DOISearch in Google Scholar

Ketris, M. P., & Yudovich, Ya. E. (2009). Estimation of Clarkes for Carbonaceous biolithes: World for trace element content in black shales and coals. International Journal of Coal Geology, 78, 135-148. DOI: 10.1016/j.coal.2009.01.002.10.1016/j.coal.2009.01.002Open DOISearch in Google Scholar

Khanra, S., Mallick, D, Dutta, S. N., Chaudhuri, S. K. (1998). Studies on the phase mineralogy and leaching characteristics of coal fly ash. Water, Air, and Soil Pollution, 107, 251-275. DOI: 10.1023/A:1004947519170.10.1023/A:1004947519170Open DOISearch in Google Scholar

Komonweeraket, K., Cetin, B., Aydilek, A. H., Benson, C. H., & Edil, T.B. (2015). Effects of pH on the leaching mechanisms of elements from fly ash mixed soils. Fuel, 140, 788-802. DOI: 10.1016/j.fuel.2014.09.068.10.1016/j.fuel.2014.09.068Open DOISearch in Google Scholar

Kovacs, H., Szemmelveisz, K., & Palotas, A.B. (2013). Solubility analysis and disposal options of combustion residues from plants grown on contaminated mining area. Environmental Science and Pollution Research, 20, 7917-7925. DOI 10.1007/s11356-013-1673-2.10.1007/s11356-013-1673-223608977Open DOISearch in Google Scholar

Lanzerstorfer, C. (2015). Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants. Journal of Environmental Sciences, 30, 191-197. DOI:10.1016/j.jes.2014.08.021.10.1016/j.jes.2014.08.021Open DOISearch in Google Scholar

Lee, J. W., Hawkins, B., Day, D. M., & Reicosky, D.C. (2010). Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration. Energy and Environmental Sciences, 11, 1695-1705. DOI: 10.1039/c004561f.10.1039/c004561fOpen DOISearch in Google Scholar

Li, L., Yu, C., Bai, J., Wang, Q., & Luo, Z. (2012). Heavy metal characterization of circulating fluidized bed derived biomass ash. Journal of Hazardous Materials, 233-234, 41-47. DOI: 10.1016/j.jhazmat.2012.06.053.10.1016/j.jhazmat.2012.06.053Open DOISearch in Google Scholar

López, R., Díaz, M. J., & González-Pérez, J. A. (2018). Extra CO2 sequestration following reutilization of biomass ash. Science of the Total Environment, 625, 1013-1020. DOI: 10.1016/j.scitotenv.2017.12.263.10.1016/j.scitotenv.2017.12.263Open DOISearch in Google Scholar

Mardon, S. M., Hower, J. C., O’Keefe, J. M. K., Marks, M. N., & Hedges, D. H. (2008). Coal combustion byproduct quality at two stoker boilers: Coal source vs. fly ash collection system design. International Journal of Coal Petrology, 75, 284-254. DOI: 10.1016/j.coal.2008.07.004.10.1016/j.coal.2008.07.004Open DOISearch in Google Scholar

Michalik, M., Pogrzeba, M., & Wilczyńska-Michalik, W. (2013). Biomass combustion – a possible source of environmental pollution? Goldschmidt 2013 Conference Abstracts, Mineralogical Magazine, 77(5), 1753.Search in Google Scholar

Modolo, R. C. E., Tarelho, L. A. C., Teixeira, E. R., Ferreira, V. M., & Labrincha, J. A. (2014). Treatment and use of bottom bed waste in biomass fluidized bed combustors. Fuel Processing Technology, 125, 170-181. DOI: 10.1016/j.fuproc.2014.03.040.10.1016/j.fuproc.2014.03.040Open DOISearch in Google Scholar

Moreno, N., Querol, X., Andrés, J. M., Stanton, K., Towler, M., Nugteren, H., Janssen Jurkovicová, M., & Jones, R. (2005). Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel, 84, 1351-1363. DOI:10.1016/j.fuel.2004.06.038.10.1016/j.fuel.2004.06.038Open DOISearch in Google Scholar

Narodoslawsky, M., & Obernberger, I. (1996). From waste to raw material – the route from biomass to wood ash for cadmium and other heavy metals. Journal of Hazardous Materials, 50, 157-168. DOI: 10.1016/0304-3894(96)01785-2.10.1016/0304-3894(96)01785-2Open DOISearch in Google Scholar

Nzihou, A., & Stanmore, B. R. (2013). The fate of heavy metals during combustion and gasification of contaminated biomass – A brief review. Journal of Hazardous Materials, 256-257, 56-66. DOI: 10.1016/j.jhazmat.2013.02.050.10.1016/j.jhazmat.2013.02.05023669791Open DOISearch in Google Scholar

Nzihou, A., & Stanmore, B. R., 2015. The formation of aerosols during the co-combustion of coal and biomass. Waste Biomass Valorization, 6, 947-957. DOI 10.1007/s12649-015-9390-3.10.1007/s12649-015-9390-3Open DOISearch in Google Scholar

Ogata, F., Tominaga, H., Yabutani, H., Taga, A., & Kawasaki, N. (2011). Recovery of molybdenum from fly ash by gibbsite. Toxicological and Environmental Chemistry, 93, 635–642. DOI: 10.1080/02772248.2011.558508.10.1080/02772248.2011.558508Open DOISearch in Google Scholar

Parzentny, H. R., & Lewińska-Preis, L. (2006). The role of sulphide and carbonate minerals in the concentration of chalcophile elements in the bituminous coal seams of a paralic series (Upper Carboniferous) in the Upper Silesian Coal Basin (USCB), Poland. Chemie der Erde, 66, 227-247. DOI:10.1016/j.chemer.2005.04.001.10.1016/j.chemer.2005.04.001Open DOISearch in Google Scholar

Priyanto, D. E., Ueno, S., Sato, N., Kasai, H., Tanoue, T., & Fukushima, H. (2016). Ash transformation by cofiring of coal with high ratios of woody biomass and effect on slagging propensity. Fuel, 174, 172-179. DOI: 10.1016/j.fuel.2016.01.072.10.1016/j.fuel.2016.01.072Open DOISearch in Google Scholar

Pronobis, M. (2006). The influence of biomass co-combustion on boiler fouling and efficiency. Fuel, 85, 474-480. DOI: 10.1016/j.fuel.2005.08.015.10.1016/j.fuel.2005.08.015Open DOISearch in Google Scholar

Querol, X., Juan, R., Lopez-Soler, A., Fernandez-Turiel, J. L., & Ruiz, C. R. (1996). Mobility of trace elements from coal and combustion wastes. Fuel, 7, 821-838. DOI: 10.1016/0016-2361(96)00027-0.10.1016/0016-2361(96)00027-0Open DOISearch in Google Scholar

Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 18 czerwca 2008 r. w sprawie wykonania niektórych przepisów ustawy o nawozach i nawożeniu. Dziennik Ustaw, 119, Poz. 765, 6515-6520.Search in Google Scholar

Rozporządzenie Ministra z dnia 27 listopada 2002 r. w sprawie wymagań jakim powinny odpowiadać wody powierzchniowe wykorzystywane do zaopatrzenia ludności w wodę przeznaczoną do spożycia. Dziennik Ustaw, 204, Poz. 1728, 12738-12751.Search in Google Scholar

Steenari, B.-M., Karlsson, L. G. & Lindqvist, O. (1999). Evaluation of the leaching characteristics of wood ash and the influence of ash agglomeration. Biomass and Bioenergy, 16, 119-136. DOI: 10.1016/S0961-9534(98)00070-1.10.1016/S0961-9534(98)00070-1Open DOISearch in Google Scholar

Supancic, K., Obernberger, I., Kienzl, N., & Arich, A. (2014). Conversion and leaching characteristics of biomass ashes during outdoor storage - Results of laboratory tests. Biomass and Bioenergy, 61, 211-226. DOI: 10.1016/j.biombioe.2013.12.014.10.1016/j.biombioe.2013.12.014Open DOISearch in Google Scholar

Świetlik, R., Trojanowska, M., & Rabek, P. (2012). Distribution patterns of Cd, Cu, Mn, Pb and Zn in wood fly ash emitted from domestic boilers. Chemical Speciation and Bioavailability, 25, 63-70. DOI: 10.3184/095422912X13497968675047.10.3184/095422912X13497968675047Open DOISearch in Google Scholar

Tan, Z., & Lagerkvist. A. (2011). Phosphorus recovery from the biomass ash: A review. Renewable and Sustainable Energy Reviews, 15, 3588-3602. DOI: 10.1016/j.rser.2011.05.016.10.1016/j.rser.2011.05.016Open DOISearch in Google Scholar

Vassilev, S. V., & Vassileva, C. G. (2007). A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behavior. Fuel, 86, 1490-1512. DOI:10.1016/j.fuel.2006.11.020.10.1016/j.fuel.2006.11.020Open DOISearch in Google Scholar

Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C.G. (2013a). An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel, 105, 40-76. DOI: 10.1016/j.fuel.2012.09.041.10.1016/j.fuel.2012.09.041Open DOISearch in Google Scholar

Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2013b). An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel, 105, 19-39. DOI: 10.1016/j.fuel.2012.10.001.10.1016/j.fuel.2012.10.001Open DOISearch in Google Scholar

Vassilev, S. V., Baxter, D., & Vassileva, C. G. (2014). An overview of the behaviour of biomass during combustion: Part II. Ash fusion and ash formation mechanisms of biomass types. Fuel, 117, 152-183. DOI: 10.1016/j.fuel.2013.09.024.10.1016/j.fuel.2013.09.024Open DOISearch in Google Scholar

Wilczyńska-Michalik, W., & Michalik, M. (2016). Trace elements in biomass fuel and biomass ash – a comparison with coal and coal ash. Goldschmidt Conference Abstracts, 3412.Search in Google Scholar

Wiśniewski, G., Michałowska-Knap, K., & Arcipowska, A. (2012). O niezrównoważonym wykorzystaniu odnawialnych zasobów energii w Polsce i patologii w systemie wsparcia OZE, Propozycje zmian podejścia do promocji OZE i kierunków wykorzystania zasobów biomasy. Instytut Energetyki Odnawialnej (EC BREC IEO), Warszawa, 1-29.Search in Google Scholar

Zheng, Y., Peter Jensen, A., Jensen, A. D., Sander, B., & Junker, H. (2007). Ash transformation during co-firing coal and straw. Fuel, 86(7-8), 1008-1020. DOI: 10.1016/j.fuel.2006.10.008.10.1016/j.fuel.2006.10.008Open DOISearch in Google Scholar

eISSN:
1899-8526
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, Geophysics, other