Mineralization of teeth and bones of the cave bear (Ursus spelaeus) from the Biśnik Cave, Southern Poland

Open access

Mineralization of teeth and bones of the cave bear (Ursus spelaeus) from the Biśnik Cave, Southern Poland

The studied bones and teeth of the cave bear (Ursus spelaeus) come from the Biśnik Cave, located in the Częstochowa Upland (Southern Poland). The specimens originate from different geological layers formed since the Odra Glaciation (250-270 thousand years BP). The fossilized bones and teeth were studied using optical microscopy, scanning electron microscopy, X-ray diffraction, FTIR spectroscopy, and INAA. They are built of recrystallized carbonate-rich apatite-(CaOH) and/or apatite-(CaOH). The teeth additionally contain some apatite-(CaF). The lack of collagen and minor REE contents suggest rapid burial and collagen decay in the early stage of diagenesis. The bones and teeth have only limited mineral infillings. In some teeth, Mn-Fe (hydroxy)oxides were found in the dentine canaliculi and in bones, some osteocyte lacunae contain Fe (hydroxy)oxides with admixture of Mn. In one bone specimen, calcite infillings are present in Haversian canals. The infillings formed during later stages of diagenesis and were succeeded by non-filled cracks.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bell L. S. (1990). Paleopathology and diagenesis: An SEM evaluation of structural changes using backscattered electron imaging. Journal of Archaeological Science 17 85-102.

  • Belouafa S. Chaair H. Loukili H. Digua K. & Sallek B. (2008). Characterization of antiseptic apatite powders prepared at biomimetics temperature and pH. Materials Research 11(1) 93-96. DOI: 10.1590/S1516-14392008000100018

  • Bocherens H. Brinkam D. B. Dauphin Y. & Mariotti A. (1994). Microstructural and geochemical investigations on late Cretaceous archosaur teeth from Alberta Canada. Canadian Journal of Earth Science 31 783-792.

  • Brady A. C. White C. D. Longstaffe F. J. & Southham G. (2008). Investigating intra-bone isotopic variations in bioapatite using IR- laser ablation and micromilling: Implications for identifying diagenesis? Palaeogeography Palaeoclimatology Palaeoecology 266 190-199. DOI: 10.1016/j.palaeo.2008.03.031.

  • Calafiori A. R. Marotta M. Nastro A. & Martino G. (2004). Low temperature method for the production of calcium phosphate fillers. BioMedical Engineering Online 3 8. DOI: 10.1186/1475-925X-3-8.

  • Cyrek K. Mirosław-Grabowska J. Stefaniak K. & Socha P. (2009). Archaeology stratigraphy and palaeoecology of the Biśnik Cave. In K. Stefaniak P. Socha & A. Tyc (Eds.) Karst of the Częstochowa Upland and the Eastern Sudetes - Palaeoenvironments and Protection (pp. 77-98). Sosnowiec-Wrocław Poland: Top Art.

  • Dauphin Y. & Williams C. T. (2004). Diagenetic trends of dental tissues. Comptes Rendus Palevol 3(6-7) 583-590. DOI: 10.1016/j.crpv.2004.07.007.

  • Denys C. Wiliam C. T. Dauphin Y. Andrews P. & Fernandez-Jalvo Y. (1996). Diagenetical changes in Pleistocene small mammals bones from Olduvai Bed-1. Palaeogeography Palaeoclimatology Palaeoecology 126 121-134.

  • Elliott J. C. (2002). Calcium phosphate biominerals. Reviews in Mineralogy and Geochemistry 48 427-453. DOI: 10.2138/rmg.2002.48.11.

  • Elorza J. Astibia H. Murelaga X. & Pereda-Suberbiola X. (1999). Francolite as a diagenetic mineral in dinosaur and other Upper Cretaceous reptile bones (Laño Iberian Peninsula): microstructural petrological and geochemical features. Cretaceous Research 20 169-187. DOI: 10.1006/cres.1999.0144.

  • Fleet M. E. & Liu X. (2004). Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure. Journal of Solid State Chemistry 177 3174-3182. DOI: 10.1016/j.jssc.2004.04.002.

  • Garland A. N. (1987). Paleohistology. Science and Archaecology 29 25-29.

  • Garland A. N. (1989). Microscopical analysis of fossil bone. Applied Geochemistry 4 215-229.

  • Gross K. A. & Berndt C. C. (2002). Biomedical Application of Apatites. Reviews in Mineralogy and Geochemistry 48 631-673. DOI: 10.2138/rmg.2002.48.17

  • Gutiérrez M. (2001). Bone diagenesis and taphonomic history of the Paso Otero 1 bone bed Pampas of Argentina. Journal of Archaeological Science 28 1277-1290. DOI: 10.1006/jasc.2000.0648

  • Gutiérrez-Salazar M. & Reyes-Gasga J. (2003). Microhardness and chemical composition of human tooth. Material Research 6 1-7. DOI: 10.1590/S1516-14392003000300011

  • Hancock R. G. V. Grynpas M. D. & Pritzker K. P. H. (1989). The abuse of bone analyses for archeological dietary studies. Archaeometry 31 169-179.

  • Hedges R. E. M. Millard A. R. & Pike A. W. G. (1995). Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science 22 201-209.

  • Hoffman E. L. (1992). Instrumental neutron activation in geoanalysis. Journal of Geochemical Exploration 44 297-319.

  • Hubert J. F. Panish P. T. Chure D. J. & Prostak K. S. (1996). Chemistry microstructure petrology and diagenetic model of Jurassic dinosaur bones Dinosaur National Monument Utah. Journal of Sedimentary Research 66 531-547.

  • Jacques L. Ogle N. Moussa I. Kalin R. Vignaud P. Brunet M. & Bocherens H. (2008). Implications of diagenesis for the isotopic analysis of Upper Miocene large mammalian herbivore tooth enamel from Chad. Palaeogeography Palaeoclimatology Palaeoecology 266 200-210. DOI: 10.1016/j.palaeo.2008.03.040.

  • Kohn M. J. Schoeninger M. J. & Valley J. W. (1996). Herbivore tooth oxygen compositions: Effects on diet and physiology. Geochimica et Cosmochimica Acta 60 3889-3896. DOI: 10.1016/0016-7037(96)00248-7.

  • Kohn M. J. Schoeninger J. & Barker W. W. (1999). Altered states: Effect on fossil tooth chemistry. Geochimica et Cosmochimica Acta 63 2737-2747. DOI: 10.1016/S0016-7037(99)00208-2.

  • Longinelli A. (1983). Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48 385-390.

  • Mirosław-Grabowska J. (1998). Stratygrafia osadów czwartorzędowych wschodniej części Pasma Smoleńsko-Niegowonickiego (Wyżyna Krakowsko-Częstochowska). Studia Geologica Polonica 113 105-119.

  • Mirosław-Grabowska J. (2002). Litologia i stratygrafia osadów Jaskini Biśnik. In K. Cyrek (Ed.) Jaskinia Biśnik. Rekonstrukcja zasiedlenia jaskini na tle zmian środowiska przyrodniczego (pp. 143-179). Toruń Poland: Wydawnictwo Uniwersytetu Mikołaja Kopernika.

  • National Cancer Institute (2009). Compact Bone and Spongy (Cancellous Bone). Retriéed November 6 2009 from http://training.seer.cancer.gov/images/anatomy/skeletal/bone_tissue.jpg

  • Nielsen-Marsh C. M. (1997). Studies in Archaeological Bone Diagenesis. Unpublished doctoral thesis University of Oxford United Kingdom.

  • Nielsen-Marsh C. M. & Hedges R. E. M. (2000). Patterns of diagenesis in bones I: The effects of site environments. Journal of Archaeological Science 27 1139-1150. DOI: 10.1006/jasc. 1999.0537.

  • Palmqvist P. Gröcke D. R. Arribas A. & Fariña R. A. (2003). Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C δ15N δ18O Sr: Zn) and ecomorphological approaches. Paleobiology 29 205-229. DOI: 10.1666/0094-8373(2003)029<0205:PROALP>2.0.CO;2.

  • Person A. Bocherens H. Saliege J. F. Paris F. Zeitoun V. & Gerard M. (1995). Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. Journal of Archaeological Science 22 211-221.

  • Pike A. W. G. (1993). Bone Porosity Water and Diagenesis: Towards a Grand Unified Theory of Bone Diagenesis. Unpublished Bachelor Thesis. University of Bradford United Kingdom.

  • Pfretzschner H. U. (2000). Microcracks and fossilization of Haversian bone. Neue Jahrbuch für Geologie und Paläontologie Abhandlungen 216 413-431.

  • Pfretzschner H. U. (2004). Journal of Archaeological Science: Fossilization of Haversian bone in aquatic environments. Comptes Rendus Palevol 3 605-616. DOI: 10.1016/j.crpv.2004.07.006.

  • Reiche I. Favre-Quattropani L. Calligaro T. Salomon J. Bocherens H. Charlet L. & Menu M. (1999). Trace element composition or archaeological bones and postmortem alteration in the burial environment. Nuclear Instruments and Methods in Physics Research 150 656-662. DOI: 10.1016/S0168-583X(98)00949-5.

  • Rey C. Collins B. Goehl T. Dickson R. & Glimsher M. J. (1989). The carbonate environment in bone mineral: A resolution-enhanced Fourier transform infrared spectroscopy study. Calcified Tissue International 45 157-164.

  • Rink W. J. & Schwarcz H. P. (1995). Tests for diagenesis in tooth enamel: ESR dating signals and carbonate contents. Journal of Archaeological Science 22 251-255.

  • Sillen A. & Sealy J. C. (1995). Diagenesis of strontium in fossil bone: A reconsideration of Nelson et al. (1986). Journal of Archaeological Science 22 313-320. DOI: 10.1006/jasc.1995.0033.

  • Simmer J. P. & Fincham A. G. (1995). Molecular mechanism of dental enamel formation. Critical Reviews in Oral Biology & Medicine 6 84-108. DOI: 10.1177/10454411950060020701.

  • Skinner H. C. W. (2000). In praise of phosphates or why vertebrates chose apatite to mineralize their skeletons. International Geological Review 42 232-240.

  • Sønju Clasen A. B & Ruyter I. E. (1997). Quantitative determination of type A and type B carbonate in human deciduous and permanent enamel by means of Fourier Transform Infrared Spectrometry. Advances in Dental Research 11 523-527. DOI: 10.1177/08959374970110042101.

  • Sukhodub L. F. Moseke C. Sukhodub L. B. Sulkio-Cleff B. Maleev V. Ya. Semenov M. A. Bereznyak E. G. & Bolbukh T. V. (2004). Collagen-hydroxyapatite-water interactions investigated by XRD piezogravimetry infrared and Raman spectroscopy. Journal of Molecular Structure 704 53-58. DOI: 10.1016/j.molstruc.2003.12.061.

  • Trueman C. N. & Tuross N. (2002). Trace elements in recent and fossil bone apatite. Reviews in Mineralogy and Geochemistry 48 489-521. DOI: 10.2138/rmg.2002.48.13.

  • Trueman C. N. Behrendsmeyer A. K. Tuross N. & Weiner S. (2004). Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park Kenya: diagenetic mechanism and the role of sediment pore fluids. Journal of Archaeological Science 31 721-739. DOI: 10.1016/j.jas.2003.11.003.

  • Tuross N. Behrensmeyer A. K. & Eanes E. D. (1989). Strontium increases and crystallinity changes in taphonomic and archaeological bone. Journal of Archaeological Science 16 661-672.

  • Tütken T. (2003). Die Bedeutung der Knochenfrühdiagenese für die Erhaltungsfähigkeit in vivo erworbener Elementund Isotopenzusammensetzungen in fossilen Knochen. Unpublished doctoral dissertation University of Tübingen Germany.

  • Tütken T. Pfretzschner H. U. Vennemann T. W. Sun G. & Wang Y. D. (2004). Paleobiology and skeletochronology of Jurassic dinosaurs: implications from the histology and oxygen isotope compositions of bones. Palaeogeography Palaeoclimatology Palaeoecology 206 217-238. DOI: 10.1016/j.palaeo.2004.01.005.

  • Tütken T. Vennemann T. W. Janz H. & Heizmann E. P. J. (2006). Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin SW Germany: A reconstruction from C O and Sr isotopes of fossil remains. Palaeogeography Palaeoclimatology Palaeoecology 241 457-491. DOI: 10.1016/j.palaeo.2006.04.007.

  • Tütken T. Furrer H. & Vennemann T. W. (2007). Stable isotope compositions of mammoth teeth from Niederweningen Switzerland: Implications for the Late Pleistocene climate environment and diet. Quaternary International 164-165 139-150. DOI: 10.1016/j.quaint.2006.09.004.

  • Tütken T. Vennemann T. W. & Pfretzschner H. U. (2008). Early diagenesis of bone and tooth apatite in fluvial and marine settings: Constraints from combined oxygen isotope nitrogen and REE analysis. Palaeogeography Palaeoclimatology Palaeoecology 266 254-268. DOI: 10.1016/j.palaeo.2008.03.037.

  • Wings O. (2004). Authigenic minerals in fossil bones from the Mesozoic of England: poor correlation with depositional environments. Palaeogeography Palaeoclimatology Palaeoecology 204 15-32. DOI: 10.1016/S0031-0182(03)00709-0.

  • Wiszniowska T. Socha P. & Stefaniak K. (2002). Czwartorzędowa fauna z osadów Jaskini Biśnik. In K. Cyrek (Ed.) Jaskinia Biśnik. Rekonstrukcja zasiedlenia jaskini na tle zmian środowiska przyrodniczego 192-220. Toruń Poland: Wydawnictwo Uniwersytetu Mikołaja Kopernika.

  • Wiśniewski M. Sionkowska A. Kaczmarek H. Lazare S. & Tokarev V. (2007). Wpływ promieniowania laserowego na cienkie błony kolagenowe (Influence of laser irradiation on the thin collagen films). Polimery 52 571-578.

  • Wopenka B. & Pasteris J. D. (2005). A mineralogical perspective on the apatite in bone. Materials Science and Engineering: C. 25 131-143. DOI: 10.1016/j.msec.2005.01.008.

  • Wychowański P. Kolmas L. Kalinowski E. Krzywicki D. Chomicki P. Gąsiorowska M. Wojtowicz A. & Kołodziejski W. (2006). Analiza porównawcza szkliwa i zębiny ludzkich zębów prawidłowych i nadliczbowych metodą mikrospetroskopii w zakresie średniej podczerwieni. Dental and medical problems 43 53-57.

Search
Journal information
Impact Factor


CiteScore 2018: 0.48

SCImago Journal Rank (SJR) 2018: 0.185
Source Normalized Impact per Paper (SNIP) 2018: 0.14

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 341 178 8
PDF Downloads 129 87 5