Open Access

Mineralization of teeth and bones of the cave bear (Ursus spelaeus) from the Biśnik Cave, Southern Poland


Cite

Bell L. S. (1990). Paleopathology and diagenesis: An SEM evaluation of structural changes using backscattered electron imaging. Journal of Archaeological Science, 17, 85-102.10.1016/0305-4403(90)90016-XSearch in Google Scholar

Belouafa S., Chaair H., Loukili H., Digua K., & Sallek B. (2008). Characterization of antiseptic apatite powders prepared at biomimetics temperature and pH. Materials Research, 11(1), 93-96. DOI: 10.1590/S1516-1439200800010001810.1590/S1516-14392008000100018Search in Google Scholar

Bocherens H., Brinkam D. B., Dauphin Y., & Mariotti A. (1994). Microstructural and geochemical investigations on late Cretaceous archosaur teeth from Alberta, Canada. Canadian Journal of Earth Science, 31, 783-792.10.1139/e94-071Search in Google Scholar

Brady A. C., White C. D., Longstaffe F. J., & Southham G. (2008). Investigating intra-bone isotopic variations in bioapatite using IR- laser ablation and micromilling: Implications for identifying diagenesis? Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 190-199. DOI: 10.1016/j.palaeo.2008.03.031.10.1016/j.palaeo.2008.03.031Search in Google Scholar

Calafiori A. R., Marotta M., Nastro A., & Martino G. (2004). Low temperature method for the production of calcium phosphate fillers. BioMedical Engineering Online, 3, 8. DOI: 10.1186/1475-925X-3-8.10.1186/1475-925X-3-8Search in Google Scholar

Cyrek K., Mirosław-Grabowska J., Stefaniak K., & Socha P. (2009). Archaeology, stratigraphy and palaeoecology of the Biśnik Cave. In K. Stefaniak P. Socha & A. Tyc (Eds.), Karst of the Częstochowa Upland and the Eastern Sudetes - Palaeoenvironments and Protection (pp. 77-98). Sosnowiec-Wrocław, Poland: Top Art.Search in Google Scholar

Dauphin Y., & Williams C. T. (2004). Diagenetic trends of dental tissues. Comptes Rendus Palevol, 3(6-7), 583-590. DOI: 10.1016/j.crpv.2004.07.007.10.1016/j.crpv.2004.07.007Search in Google Scholar

Denys C., Wiliam C. T., Dauphin Y., Andrews P., & Fernandez-Jalvo Y. (1996). Diagenetical changes in Pleistocene small mammals bones from Olduvai Bed-1. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 121-134.10.1016/S0031-0182(97)88905-5Search in Google Scholar

Elliott J. C. (2002). Calcium phosphate biominerals. Reviews in Mineralogy and Geochemistry, 48, 427-453. DOI: 10.2138/rmg.2002.48.11.10.2138/rmg.2002.48.11Search in Google Scholar

Elorza J., Astibia H., Murelaga X., & Pereda-Suberbiola X. (1999). Francolite as a diagenetic mineral in dinosaur and other Upper Cretaceous reptile bones (Laño, Iberian Peninsula): microstructural, petrological and geochemical features. Cretaceous Research, 20, 169-187. DOI: 10.1006/cres.1999.0144.10.1006/cres.1999.0144Search in Google Scholar

Fleet M. E., & Liu X. (2004). Location of type B carbonate ion in type A-B carbonate apatite synthesized at high pressure. Journal of Solid State Chemistry, 177, 3174-3182. DOI: 10.1016/j.jssc.2004.04.002.10.1016/j.jssc.2004.04.002Search in Google Scholar

Garland A. N. (1987). Paleohistology. Science and Archaecology, 29, 25-29.Search in Google Scholar

Garland A. N. (1989). Microscopical analysis of fossil bone. Applied Geochemistry, 4, 215-229.10.1016/0883-2927(89)90021-8Search in Google Scholar

Gross K. A. & Berndt C. C. (2002). Biomedical Application of Apatites. Reviews in Mineralogy and Geochemistry, 48, 631-673. DOI: 10.2138/rmg.2002.48.1710.2138/rmg.2002.48.17Search in Google Scholar

Gutiérrez M. (2001). Bone diagenesis and taphonomic history of the Paso Otero 1 bone bed, Pampas of Argentina. Journal of Archaeological Science, 28, 1277-1290. DOI: 10.1006/jasc.2000.064810.1006/jasc.2000.0648Search in Google Scholar

Gutiérrez-Salazar M., & Reyes-Gasga J. (2003). Microhardness and chemical composition of human tooth. Material Research, 6, 1-7. DOI: 10.1590/S1516-1439200300030001110.1590/S1516-14392003000300011Search in Google Scholar

Hancock R. G. V., Grynpas M. D., & Pritzker K. P. H. (1989). The abuse of bone analyses for archeological dietary studies. Archaeometry, 31, 169-179.10.1111/j.1475-4754.1989.tb01012.xSearch in Google Scholar

Hedges R. E. M., Millard A. R., & Pike A. W. G. (1995). Measurements and relationships of diagenetic alteration of bone from three archaeological sites. Journal of Archaeological Science, 22, 201-209.10.1006/jasc.1995.0022Search in Google Scholar

Hoffman E. L. (1992). Instrumental neutron activation in geoanalysis. Journal of Geochemical Exploration, 44, 297-319.10.1016/0375-6742(92)90053-BSearch in Google Scholar

Hubert J. F., Panish P. T., Chure D. J., & Prostak K. S. (1996). Chemistry, microstructure, petrology, and diagenetic model of Jurassic dinosaur bones, Dinosaur National Monument, Utah. Journal of Sedimentary Research, 66, 531-547.Search in Google Scholar

Jacques L., Ogle N., Moussa I., Kalin R., Vignaud P., Brunet M., & Bocherens H. (2008). Implications of diagenesis for the isotopic analysis of Upper Miocene large mammalian herbivore tooth enamel from Chad. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 200-210. DOI: 10.1016/j.palaeo.2008.03.040.10.1016/j.palaeo.2008.03.040Search in Google Scholar

Kohn M. J., Schoeninger M. J., & Valley J. W. (1996). Herbivore tooth oxygen compositions: Effects on diet and physiology. Geochimica et Cosmochimica Acta, 60, 3889-3896. DOI: 10.1016/0016-7037(96)00248-7.10.1016/0016-7037(96)00248-7Search in Google Scholar

Kohn M. J., Schoeninger J., & Barker W. W. (1999). Altered states: Effect on fossil tooth chemistry. Geochimica et Cosmochimica Acta, 63, 2737-2747. DOI: 10.1016/S0016-7037(99)00208-2.10.1016/S0016-7037(99)00208-2Search in Google Scholar

Longinelli A. (1983). Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta, 48, 385-390.10.1016/0016-7037(84)90259-XSearch in Google Scholar

Mirosław-Grabowska J. (1998). Stratygrafia osadów czwartorzędowych wschodniej części Pasma Smoleńsko-Niegowonickiego (Wyżyna Krakowsko-Częstochowska). Studia Geologica Polonica, 113, 105-119.Search in Google Scholar

Mirosław-Grabowska J. (2002). Litologia i stratygrafia osadów Jaskini Biśnik. In K. Cyrek (Ed.), Jaskinia Biśnik. Rekonstrukcja zasiedlenia jaskini na tle zmian środowiska przyrodniczego (pp. 143-179). Toruń, Poland: Wydawnictwo Uniwersytetu Mikołaja Kopernika.Search in Google Scholar

National Cancer Institute (2009). Compact Bone and Spongy (Cancellous Bone). Retriéed November 6, 2009, from http://training.seer.cancer.gov/images/anatomy/skeletal/bone_tissue.jpgSearch in Google Scholar

Nielsen-Marsh C. M. (1997). Studies in Archaeological Bone Diagenesis. Unpublished doctoral thesis, University of Oxford, United Kingdom.Search in Google Scholar

Nielsen-Marsh C. M., & Hedges R. E. M. (2000). Patterns of diagenesis in bones I: The effects of site environments. Journal of Archaeological Science, 27, 1139-1150. DOI: 10.1006/jasc. 1999.0537.Search in Google Scholar

Palmqvist P., Gröcke D. R., Arribas A., & Fariña R. A. (2003). Paleoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr: Zn) and ecomorphological approaches. Paleobiology, 29, 205-229. DOI: 10.1666/0094-8373(2003)029<0205:PROALP>2.0.CO;2.10.1666/0094-8373(2003)029<0205:PROALP>2.0.CO;2Search in Google Scholar

Person A., Bocherens H., Saliege J. F., Paris F., Zeitoun V., & Gerard M. (1995). Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. Journal of Archaeological Science 22, 211-221.10.1006/jasc.1995.0023Search in Google Scholar

Pike A. W. G. (1993). Bone Porosity, Water and Diagenesis: Towards a Grand Unified Theory of Bone Diagenesis. Unpublished Bachelor Thesis. University of Bradford, United Kingdom.Search in Google Scholar

Pfretzschner H. U. (2000). Microcracks and fossilization of Haversian bone. Neue Jahrbuch für Geologie und Paläontologie Abhandlungen, 216, 413-431.10.1127/njgpa/216/2000/413Search in Google Scholar

Pfretzschner H. U. (2004). Journal of Archaeological Science: Fossilization of Haversian bone in aquatic environments. Comptes Rendus Palevol, 3, 605-616. DOI: 10.1016/j.crpv.2004.07.006.10.1016/j.crpv.2004.07.006Search in Google Scholar

Reiche I., Favre-Quattropani L., Calligaro T., Salomon J., Bocherens H., Charlet L., & Menu M. (1999). Trace element composition or archaeological bones and postmortem alteration in the burial environment. Nuclear Instruments and Methods in Physics Research, 150, 656-662. DOI: 10.1016/S0168-583X(98)00949-5.10.1016/S0168-583X(98)00949-5Search in Google Scholar

Rey C., Collins B., Goehl T., Dickson R., & Glimsher M. J. (1989). The carbonate environment in bone mineral: A resolution-enhanced Fourier transform infrared spectroscopy study. Calcified Tissue International, 45, 157-164.10.1007/BF02556059Search in Google Scholar

Rink W. J., & Schwarcz H. P. (1995). Tests for diagenesis in tooth enamel: ESR dating signals and carbonate contents. Journal of Archaeological Science, 22, 251-255.10.1006/jasc.1995.0026Search in Google Scholar

Sillen A., & Sealy J. C. (1995). Diagenesis of strontium in fossil bone: A reconsideration of Nelson et al. (1986). Journal of Archaeological Science, 22, 313-320. DOI: 10.1006/jasc.1995.0033.10.1006/jasc.1995.0033Search in Google Scholar

Simmer J. P., & Fincham A. G. (1995). Molecular mechanism of dental enamel formation. Critical Reviews in Oral Biology & Medicine, 6, 84-108. DOI: 10.1177/10454411950060020701.10.1177/10454411950060020701Search in Google Scholar

Skinner H. C. W. (2000). In praise of phosphates, or why vertebrates chose apatite to mineralize their skeletons. International Geological Review, 42, 232-240.10.1080/00206810009465080Search in Google Scholar

Sønju Clasen A. B, & Ruyter I. E. (1997). Quantitative determination of type A and type B carbonate in human deciduous and permanent enamel by means of Fourier Transform Infrared Spectrometry. Advances in Dental Research, 11, 523-527. DOI: 10.1177/08959374970110042101.10.1177/08959374970110042101Search in Google Scholar

Sukhodub L. F., Moseke C., Sukhodub L. B., Sulkio-Cleff B., Maleev V. Ya., Semenov M. A., Bereznyak E. G., & Bolbukh T. V. (2004). Collagen-hydroxyapatite-water interactions investigated by XRD, piezogravimetry, infrared and Raman spectroscopy. Journal of Molecular Structure, 704, 53-58. DOI: 10.1016/j.molstruc.2003.12.061.10.1016/j.molstruc.2003.12.061Search in Google Scholar

Trueman C. N., & Tuross N. (2002). Trace elements in recent and fossil bone apatite. Reviews in Mineralogy and Geochemistry, 48, 489-521. DOI: 10.2138/rmg.2002.48.13.10.2138/rmg.2002.48.13Search in Google Scholar

Trueman C. N., Behrendsmeyer A. K., Tuross N., & Weiner S. (2004). Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanism and the role of sediment pore fluids. Journal of Archaeological Science, 31, 721-739. DOI: 10.1016/j.jas.2003.11.003.10.1016/j.jas.2003.11.003Search in Google Scholar

Tuross N., Behrensmeyer A. K., & Eanes E. D. (1989). Strontium increases and crystallinity changes in taphonomic and archaeological bone. Journal of Archaeological Science, 16, 661-672.10.1016/0305-4403(89)90030-7Search in Google Scholar

Tütken T. (2003). Die Bedeutung der Knochenfrühdiagenese für die Erhaltungsfähigkeit in vivo erworbener Elementund Isotopenzusammensetzungen in fossilen Knochen. Unpublished doctoral dissertation, University of Tübingen, Germany.Search in Google Scholar

Tütken T., Pfretzschner H. U., Vennemann T. W., Sun G., & Wang Y. D. (2004). Paleobiology and skeletochronology of Jurassic dinosaurs: implications from the histology and oxygen isotope compositions of bones. Palaeogeography, Palaeoclimatology, Palaeoecology, 206, 217-238. DOI: 10.1016/j.palaeo.2004.01.005.10.1016/j.palaeo.2004.01.005Search in Google Scholar

Tütken T., Vennemann T. W., Janz H., & Heizmann E. P. J. (2006). Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany: A reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 457-491. DOI: 10.1016/j.palaeo.2006.04.007.10.1016/j.palaeo.2006.04.007Search in Google Scholar

Tütken T., Furrer H., & Vennemann T. W. (2007). Stable isotope compositions of mammoth teeth from Niederweningen, Switzerland: Implications for the Late Pleistocene climate, environment and diet. Quaternary International, 164-165, 139-150. DOI: 10.1016/j.quaint.2006.09.004.10.1016/j.quaint.2006.09.004Search in Google Scholar

Tütken T., Vennemann T. W., & Pfretzschner H. U. (2008). Early diagenesis of bone and tooth apatite in fluvial and marine settings: Constraints from combined oxygen isotope, nitrogen and REE analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 254-268. DOI: 10.1016/j.palaeo.2008.03.037.10.1016/j.palaeo.2008.03.037Search in Google Scholar

Wings O. (2004). Authigenic minerals in fossil bones from the Mesozoic of England: poor correlation with depositional environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 204, 15-32. DOI: 10.1016/S0031-0182(03)00709-0.10.1016/S0031-0182(03)00709-0Search in Google Scholar

Wiszniowska T., Socha P., & Stefaniak K. (2002). Czwartorzędowa fauna z osadów Jaskini Biśnik. In K. Cyrek (Ed.), Jaskinia Biśnik. Rekonstrukcja zasiedlenia jaskini na tle zmian środowiska przyrodniczego, 192-220. Toruń, Poland: Wydawnictwo Uniwersytetu Mikołaja Kopernika.Search in Google Scholar

Wiśniewski M., Sionkowska A., Kaczmarek H., Lazare S., & Tokarev V. (2007). Wpływ promieniowania laserowego na cienkie błony kolagenowe (Influence of laser irradiation on the thin collagen films). Polimery, 52, 571-578.Search in Google Scholar

Wopenka B., & Pasteris J. D. (2005). A mineralogical perspective on the apatite in bone. Materials Science and Engineering: C., 25, 131-143. DOI: 10.1016/j.msec.2005.01.008.10.1016/j.msec.2005.01.008Search in Google Scholar

Wychowański P., Kolmas L., Kalinowski E., Krzywicki D., Chomicki P., Gąsiorowska M., Wojtowicz A., & Kołodziejski W. (2006). Analiza porównawcza szkliwa i zębiny ludzkich zębów prawidłowych i nadliczbowych metodą mikrospetroskopii w zakresie średniej podczerwieni. Dental and medical problems, 43, 53-57.Search in Google Scholar

eISSN:
1899-8526
ISSN:
1899-8291
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, Geophysics, other