Computer Simulations of the Band Structure and Density of States of the Linear Chains of NaCl Ions


The paper presents the results of first-principles computer simulations of the band structure, the density of states, and the total energy of NaCl (NaCl, Na2Cl2, Na3Cl3, Na4Cl4, Na6Cl6) linear chains of atoms. Modelling of the specified characteristics is realised in the computer code Atomistix ToolKit combined with Virtual NanoLab. The total energy depends on the number of ions in the nanoobject under study, but practically does not depend on the geometric arrangement of ions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Lushchik, C., Kolk, J., Lushchik, A., Lushchik, N., Taiirov, M., & Vasilchenko, E. (1982). Decay of excitons into long-lived F, H and α, I pairs in KCl. Physica Status Solidi (b), 114(1), 103–111.

  • 2. Lushchik, C., Kolk, J., Lushchik, A., & Lushchik, N. (1984). Radiational creation of Frenkel defects in KCl- Tl. Physica Status Solidi (a), 86(1), 219–227.

  • 3. Lushchik, A. C., & Frorip, A. G. (1990). Thermalized and hot interstitial halogen ions in alkali halides. Physica Status Solidi (b), 161(2), 525–535.

  • 4. Popov, A. I., Kotomin, E. A., & Maier, J. (2010). Basic properties of the F-type centers in halides, oxides and perovskites. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(19), 3084–3089.

  • 5. Eglitis, R. I., Popov, A. I., & Kotomin, E. A. (1995). Computer simulations of I-center annealing in KCl and KBr crystals. Theoretical interpretation of thermostimulated experiments. Physica Status Solidi (b), 190(2), 353–362.

  • 6. Kuzovkov, V. N., Popov, A. I., Kotomin, E. A., Moskina, A. M., Vasilchenko, E., & Lushchik, A. (2016). Theoretical analysis of the kinetics of low-temperature defect recombination in alkali halide crystals. Low Temperature Physics, 42(7), 588–593.

  • 7. Lushchik, A., Lushchik, Ch., Vasil’chenko, E., & Popov, A. (2018). Radiation creation of cation defects in alkali halide crystals: Review and today’s concept. Low Temperature Physics, 44, 357–367.

  • 8. Kotomin, E., Popov, A., & Hirai, M. (1994). A contradiction between pulsed and steady-state studies in the recombination kinetics of close Frenkel defects in KBr and KCl crystals. Journal of the Physical Society of Japan, 63(7), 2602–2611.

  • 9. Kotomin, E. A., Popov, A. I., & Eglitis, R. I. (1992). Correlated annealing of radiation defects in alkali halide crystals. Journal of Physics: Condensed Matter, 4(27), 5901–5910.

  • 10. Szymonski, M., Droba, A., Struski, P., & Krok, F. (2012). Dynamics of the defect-mediated desorption of alkali halide surfaces. Low Temperature Physics, 38(8), 774–778.

  • 11. Chernov, S. A., Trinkler, L., & Popov, A. I. (1998). Photo-and thermo-stimulated luminescence of CsI—Tl crystal after UV light irradiation at 80 K. Radiation Effects and Defects in Solids, 143(4), 345–355.

  • 12. Popov, A. I., Chernov, S. A., & Trinkler, L. E. (1997). Time-resolved luminescence of CsI-Tl crystals excited by pulsed electron beam. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 122(3), 602–605.

  • 13. Popov, A. I., & Balanzat, E. (2000). F centre production in CsI and CsI–Tl crystals under Kr ion irradiation at 15 K. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 166, 545–549.

  • 14. Totsuka, D., Yanagida, T., Fujimoto, Y., Yokota, Y., Moretti, F., Vedda, A., & Yoshikawa, A. (2012). Afterglow suppression by co-doping with Bi in CsI: Tl crystal scintillator. Applied Physics Express, 5(5), 052601.

  • 15. Rogulis, U., Spaeth, J. M., Elsts, E., & Dolgopolova, A. (2004). Tl-related radiation defects in CsI: Tl. Radiation Measurements, 38(4–6), 389–392.

  • 16. Zorenko, Y. V., Turchak, R. M., Gryk, W., & Grinberg, M. (2004). Luminescent spectroscopy of Eu2+ centers in CsBr: Eu single crystals at 10–550 K. Journal of Luminescence, 106(3-4), 313–320.

  • 17. Trinkler, L. E., Trinkler, M. F., & Popov, A. I. (1993). Stimulation energy of the X-ray storage material KBr: In. Physica Status Solidi (b), 180(1), K31–K34.

  • 18. Schweizer, S. (2001). Physics and current understanding of X-ray storage phosphors. Physica Status Solidi (a), 187(2), 335–393.

  • 19. Popov, A. I., & Plavina, I. (1995). Photostimulated emission of KBr—In previously exposed to UV-or X-radiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 101(3), 252–254.

  • 20. Halliday, M. T. E., Hess, W. P., & Shluger, A. L. (2015). Structure and properties of electronic and hole centers in CsBr from theoretical calculations. Journal of Physics: Condensed Matter, 27(24), 245501.

  • 21. Armington, A. F., Posen, H., & Lipson, H. (1973). Strengthening of halides for infrared windows. Journal of Electronic Materials, 2(1), 127–136.

  • 22. Kumar, A., Ravindra, N., & Rath, R. (1979). Optoelectronic properties of alkali halides. Journal of Physics and Chemistry of Solids, 40(12), 1141–1142.

  • 23. Uzi, L., Scharf, D., & Jortner, J. (1985). Electron localization in alkali-halide clusters. Physical Review Letters, 54(16), 1860–1863.

  • 24. Whetten, R.L. (1993). Alkali Halide Nanocrystals. Acc. Chem. Rev., 26, 49–56.

  • 25. Lisitsyn, V., Lisitsyna, L., & Polisadova, E. (2015). Nanodefect substructures in crystal phosphors. IOP Conference Series: Materials Science and Engineering, 81(1), 012020.

  • 26. Babin, V., Elango, A., Kalder, K., Maaroos, A., Shunkeev, K., Vasilchenko, E., & Zazubovich, S. (1999). Luminescent defects created in alkali iodides by unelastic uniaxial deformation at 4.2K. J. Luminescence, 81, 71–77.

  • 27. Shunkeyev, K., Sergeyev, D., Myasnikova, L., Barmina, A., Shunkeyev, S., Zhanturina, N., & Aimaganbetova, Z. (2014). Vacancy dipole currents of thermostimulated depolarization in a plastically deformed KCl crystal. Russian Physics Journal, 57(4), 451–458.

  • 28. Kotomin, E. A., Kuzovkov, V. N., & Popov, A. I. (2001). The kinetics of defect aggregation and metal colloid formation in ionic solids under irradiation. Radiation Effects and Defects in Solids, 155(1–4), 113–125.

  • 29. Shunkeev, K., Sarmukhanov, E., Barmina, A., Myasnikova, L., Sagimbaeva, Sh., & Shunkeev, S. (2008). Specific features of the temperature quenching of luminescence of self-trapped excitons in alkali halide crystals under low-temperature deformation. Phys. Solid State, 50(10), 1799–1802.

  • 30. Wang, F., & Landau, D.P. (2001). Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. American Physical Society, 86, 2050–2053.

  • 31. Kaukonen, H.-P., Landman, U., & Cleveland, C.L. (1991). Reactions in clusters. J. Chem. Phys., 95, 4997–5013.

  • 32. Heidorn, S.-Ch., Bertram, C., Cabrera-Sanfelix, P., & Morgenstern, K. (2015). Consecutive mechanism in the diffusion of D2O on NaCl (100) bilayer. ACS Nano, 9(4), 3572–3578.

  • 33. Hoya, J., Laborde, J.I., Richard, D., & Rentería, M. (2017). Ab initio study of F-centers in alkali halides. Computational Materials Science, 139, 1–7.

  • 34. Valeev, F., & Sherrill, C. D. (2003). The diagonal Born–Oppenheimer correction beyond the Hartree–Fock approximation. The Journal of Chemical Physics, 118 (9), 10.1063/1.1540626.

  • 35. Atomistix ToolKit. Manual Version 2015.1., 840 (QuantumWise A/S: 2015).

  • 36. Cherepanov, A.N., & Shul’gin, B.V. (2005). Utochneniye raschetnykh znacheniy radiusov ionov shchelochnogaloidnykh soyedineniy. Problemy spektroskopii: mezhvuzovskiy sbornik nauchnykh trudov, Yekaterinburg, 19, 77–86.

  • 37. Sharma, S., Dewhurst, J. K., Lathiotakis, N. N., & Gross, E. K. (2008). Reduced density matrix functional for many-electron systems. Phys. Rev., B 78, 201103(R).

  • 38. Kohn, W.A., Becke, D., & Parr, R.G. (1996). Density functional theory of electronic structure. J. Phys. Chem., 100, 12974–12980.

  • 39. Roessler, D. M., & Walker, W. C. (1968). Electronic spectra of crystalline NaCl and KCl. Physical Review, 166(3), 599.


Journal + Issues