Cite

1. Lushchik, C., Kolk, J., Lushchik, A., Lushchik, N., Taiirov, M., & Vasilchenko, E. (1982). Decay of excitons into long-lived F, H and α, I pairs in KCl. Physica Status Solidi (b), 114(1), 103–111.10.1002/pssb.2221140112Search in Google Scholar

2. Lushchik, C., Kolk, J., Lushchik, A., & Lushchik, N. (1984). Radiational creation of Frenkel defects in KCl- Tl. Physica Status Solidi (a), 86(1), 219–227.10.1002/pssa.2210860123Search in Google Scholar

3. Lushchik, A. C., & Frorip, A. G. (1990). Thermalized and hot interstitial halogen ions in alkali halides. Physica Status Solidi (b), 161(2), 525–535.10.1002/pssb.2221610208Search in Google Scholar

4. Popov, A. I., Kotomin, E. A., & Maier, J. (2010). Basic properties of the F-type centers in halides, oxides and perovskites. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(19), 3084–3089.10.1016/j.nimb.2010.05.053Search in Google Scholar

5. Eglitis, R. I., Popov, A. I., & Kotomin, E. A. (1995). Computer simulations of I-center annealing in KCl and KBr crystals. Theoretical interpretation of thermostimulated experiments. Physica Status Solidi (b), 190(2), 353–362.10.1002/pssb.2221900204Search in Google Scholar

6. Kuzovkov, V. N., Popov, A. I., Kotomin, E. A., Moskina, A. M., Vasilchenko, E., & Lushchik, A. (2016). Theoretical analysis of the kinetics of low-temperature defect recombination in alkali halide crystals. Low Temperature Physics, 42(7), 588–593.10.1063/1.4959018Search in Google Scholar

7. Lushchik, A., Lushchik, Ch., Vasil’chenko, E., & Popov, A. (2018). Radiation creation of cation defects in alkali halide crystals: Review and today’s concept. Low Temperature Physics, 44, 357–367.10.1063/1.5030448Search in Google Scholar

8. Kotomin, E., Popov, A., & Hirai, M. (1994). A contradiction between pulsed and steady-state studies in the recombination kinetics of close Frenkel defects in KBr and KCl crystals. Journal of the Physical Society of Japan, 63(7), 2602–2611.10.1143/JPSJ.63.2602Search in Google Scholar

9. Kotomin, E. A., Popov, A. I., & Eglitis, R. I. (1992). Correlated annealing of radiation defects in alkali halide crystals. Journal of Physics: Condensed Matter, 4(27), 5901–5910.10.1088/0953-8984/4/27/009Search in Google Scholar

10. Szymonski, M., Droba, A., Struski, P., & Krok, F. (2012). Dynamics of the defect-mediated desorption of alkali halide surfaces. Low Temperature Physics, 38(8), 774–778.10.1063/1.4743591Search in Google Scholar

11. Chernov, S. A., Trinkler, L., & Popov, A. I. (1998). Photo-and thermo-stimulated luminescence of CsI—Tl crystal after UV light irradiation at 80 K. Radiation Effects and Defects in Solids, 143(4), 345–355.10.1080/10420159808214037Search in Google Scholar

12. Popov, A. I., Chernov, S. A., & Trinkler, L. E. (1997). Time-resolved luminescence of CsI-Tl crystals excited by pulsed electron beam. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 122(3), 602–605.10.1016/S0168-583X(96)00664-7Search in Google Scholar

13. Popov, A. I., & Balanzat, E. (2000). F centre production in CsI and CsI–Tl crystals under Kr ion irradiation at 15 K. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 166, 545–549.10.1016/S0168-583X(99)00789-2Search in Google Scholar

14. Totsuka, D., Yanagida, T., Fujimoto, Y., Yokota, Y., Moretti, F., Vedda, A., & Yoshikawa, A. (2012). Afterglow suppression by co-doping with Bi in CsI: Tl crystal scintillator. Applied Physics Express, 5(5), 052601.10.1143/APEX.5.052601Search in Google Scholar

15. Rogulis, U., Spaeth, J. M., Elsts, E., & Dolgopolova, A. (2004). Tl-related radiation defects in CsI: Tl. Radiation Measurements, 38(4–6), 389–392.10.1016/j.radmeas.2003.12.005Search in Google Scholar

16. Zorenko, Y. V., Turchak, R. M., Gryk, W., & Grinberg, M. (2004). Luminescent spectroscopy of Eu2+ centers in CsBr: Eu single crystals at 10–550 K. Journal of Luminescence, 106(3-4), 313–320.10.1016/j.jlumin.2003.11.005Search in Google Scholar

17. Trinkler, L. E., Trinkler, M. F., & Popov, A. I. (1993). Stimulation energy of the X-ray storage material KBr: In. Physica Status Solidi (b), 180(1), K31–K34.10.1002/pssb.2221800134Search in Google Scholar

18. Schweizer, S. (2001). Physics and current understanding of X-ray storage phosphors. Physica Status Solidi (a), 187(2), 335–393.10.1002/1521-396X(200110)187:2<335::AID-PSSA335>3.0.CO;2-QSearch in Google Scholar

19. Popov, A. I., & Plavina, I. (1995). Photostimulated emission of KBr—In previously exposed to UV-or X-radiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 101(3), 252–254.10.1016/0168-583X(95)00485-8Search in Google Scholar

20. Halliday, M. T. E., Hess, W. P., & Shluger, A. L. (2015). Structure and properties of electronic and hole centers in CsBr from theoretical calculations. Journal of Physics: Condensed Matter, 27(24), 245501.10.1088/0953-8984/27/24/245501Search in Google Scholar

21. Armington, A. F., Posen, H., & Lipson, H. (1973). Strengthening of halides for infrared windows. Journal of Electronic Materials, 2(1), 127–136.10.1007/BF02658107Open DOISearch in Google Scholar

22. Kumar, A., Ravindra, N., & Rath, R. (1979). Optoelectronic properties of alkali halides. Journal of Physics and Chemistry of Solids, 40(12), 1141–1142.10.1016/0022-3697(79)90149-5Search in Google Scholar

23. Uzi, L., Scharf, D., & Jortner, J. (1985). Electron localization in alkali-halide clusters. Physical Review Letters, 54(16), 1860–1863.10.1103/PhysRevLett.54.1860Search in Google Scholar

24. Whetten, R.L. (1993). Alkali Halide Nanocrystals. Acc. Chem. Rev., 26, 49–56.10.1021/ar00026a003Search in Google Scholar

25. Lisitsyn, V., Lisitsyna, L., & Polisadova, E. (2015). Nanodefect substructures in crystal phosphors. IOP Conference Series: Materials Science and Engineering, 81(1), 012020.10.1088/1757-899X/81/1/012020Search in Google Scholar

26. Babin, V., Elango, A., Kalder, K., Maaroos, A., Shunkeev, K., Vasilchenko, E., & Zazubovich, S. (1999). Luminescent defects created in alkali iodides by unelastic uniaxial deformation at 4.2K. J. Luminescence, 81, 71–77.10.1016/S0022-2313(98)00051-9Open DOISearch in Google Scholar

27. Shunkeyev, K., Sergeyev, D., Myasnikova, L., Barmina, A., Shunkeyev, S., Zhanturina, N., & Aimaganbetova, Z. (2014). Vacancy dipole currents of thermostimulated depolarization in a plastically deformed KCl crystal. Russian Physics Journal, 57(4), 451–458.10.1007/s11182-014-0261-3Open DOISearch in Google Scholar

28. Kotomin, E. A., Kuzovkov, V. N., & Popov, A. I. (2001). The kinetics of defect aggregation and metal colloid formation in ionic solids under irradiation. Radiation Effects and Defects in Solids, 155(1–4), 113–125.10.1080/10420150108214102Search in Google Scholar

29. Shunkeev, K., Sarmukhanov, E., Barmina, A., Myasnikova, L., Sagimbaeva, Sh., & Shunkeev, S. (2008). Specific features of the temperature quenching of luminescence of self-trapped excitons in alkali halide crystals under low-temperature deformation. Phys. Solid State, 50(10), 1799–1802.10.1134/S1063783408100016Search in Google Scholar

30. Wang, F., & Landau, D.P. (2001). Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. American Physical Society, 86, 2050–2053.10.1103/PhysRevLett.86.205011289852Open DOISearch in Google Scholar

31. Kaukonen, H.-P., Landman, U., & Cleveland, C.L. (1991). Reactions in clusters. J. Chem. Phys., 95, 4997–5013.10.1063/1.461716Search in Google Scholar

32. Heidorn, S.-Ch., Bertram, C., Cabrera-Sanfelix, P., & Morgenstern, K. (2015). Consecutive mechanism in the diffusion of D2O on NaCl (100) bilayer. ACS Nano, 9(4), 3572–3578.10.1021/acsnano.5b0069125731809Search in Google Scholar

33. Hoya, J., Laborde, J.I., Richard, D., & Rentería, M. (2017). Ab initio study of F-centers in alkali halides. Computational Materials Science, 139, 1–7.10.1016/j.commatsci.2017.07.015Search in Google Scholar

34. Valeev, F., & Sherrill, C. D. (2003). The diagonal Born–Oppenheimer correction beyond the Hartree–Fock approximation. The Journal of Chemical Physics, 118 (9), 10.1063/1.1540626.10.1063/1.1540626Search in Google Scholar

35. Atomistix ToolKit. Manual Version 2015.1., 840 (QuantumWise A/S: 2015).Search in Google Scholar

36. Cherepanov, A.N., & Shul’gin, B.V. (2005). Utochneniye raschetnykh znacheniy radiusov ionov shchelochnogaloidnykh soyedineniy. Problemy spektroskopii: mezhvuzovskiy sbornik nauchnykh trudov, Yekaterinburg, 19, 77–86.Search in Google Scholar

37. Sharma, S., Dewhurst, J. K., Lathiotakis, N. N., & Gross, E. K. (2008). Reduced density matrix functional for many-electron systems. Phys. Rev., B 78, 201103(R).10.1103/PhysRevB.78.201103Search in Google Scholar

38. Kohn, W.A., Becke, D., & Parr, R.G. (1996). Density functional theory of electronic structure. J. Phys. Chem., 100, 12974–12980.10.1021/jp960669lOpen DOISearch in Google Scholar

39. Roessler, D. M., & Walker, W. C. (1968). Electronic spectra of crystalline NaCl and KCl. Physical Review, 166(3), 599.10.1103/PhysRev.166.599Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics