Effect of in Doping on the ZnO Powders Morphology and Microstructure Evolution of ZnO:In Ceramics as a Material for Scintillators

Open access

Abstract

Transparent ZnO ceramics are of interest for use as material for high-efficiency fast scintillators. Doping ZnO ceramics in order to improve complex of their properties is a promising direction. In the present research, the role of indium in the ZnO nanopowders surface interactions and in the change of microstructures and photoluminescence (PL) characteristics of sintered cera-mics is considered. Undoped and 0.13 wt% In doped ZnO ceramics are obtained by hot pressing sintering. It has been found that indium leads to the transition of initially faceted ZnO particles to rounded, contributing to good sintering with formation of diffusion active grain boundaries (GBs). Unlike ZnO ceramics, ZnO:In ceramics microstructure is characterised by the trans-crystalline mode of fracture, faceted GBs with places of zig-zag forms and predominant distribution of In at the GBs. Such indium induced modifications of GBs promote removal of point defects and reduce PL parameter α = Idef/Iexc in comparison with the undoped ceramics. Results characterise ZnO:In cera-mics with improved GBs properties as a prospective material for scintillators.

1. Klingshirn, C. F., Meyer, B. K., Waag, A., & Hoffmann, A. (2010). Zinc oxide. From fundamental properties towards novel applications. Springer Series in Materials Science. 120. Springer, Heidelberg.

2. Ozgur, U., Alivov, Y I., Liu, C., Teke A., Reshchikov, M. A., Dogan, S.... Morkoc, H. (2005). A comprehensive review of ZnO materials and devices. J. App.Phys. 98, 04301l.

3. Zhang, Z., Du, J., Li, B., Zhang, S., Hong, M., Zhang, X. …Zhang, Y. (2017). Ultrathin strain gated field effect transistor based on In-doped ZnO nanobelts. APL Materials 5, 086111.

4. Lu, K. (2008). Sintering of nanoceramics. Intern. Mater. Rev. 53, 21–38.

5. Polyakov, B., Dorogin, L., Lohmus, A., Romanov, A., & Lohmus, R. (2012). In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope. Appl. Surf. Sci. 258, 3227–3231.

6. Wilson, H. F., Tang, C., & Barnard, A. S. (2016). Morphology of zinc oxide nanoparticles and nanowires: Role of surface and edge energies. Phys. Chem. C, 120, 9498.

7. Huber, S. E., Hellström, M., Probst, M., Hermansson, K., & Broqvist, P. (2014). Large-scale SCC-DFTB calculations of reconstructed polar ZnO surfaces. Surf. Sci. 628, 50–61.

8. Wilkinson, J., Ucer, K.B., & Williams, R.T. (2005). The oscillator strength of extended exciton states and possibility for very fast scintillators. Nucl. Instr. and Methods. Phys. Res. A. 537, 66–70.

9. Rodnyi, P. A., Chernenko, K. A., Gorokhova, E. I., Kozlovskii, S.S., Khanin, V.M., & Khodyuk, I.V. (2012). Novel scintillation material – ZnO transparent ceramics. IEEE Trans. Nucl. Sci. 59(5), 2152–2155.

10. Kelly, J. P., & Graeve, O A. (2013). Effect of powder characteristics on nanosintering sintering mechanisms of convention nanodensification and field assisted processes. Sintering, 57–95.

11. Muktepavela, F., Zabels, R., Sursajeva, V., Grigorjeva, L., & Kundzins, K. (2012). The role of nanopowder particle surfaces and grain boundary defects in the sintering of ZnO ceramics. IOP Conf. Ser. Mater. Sci. Eng. 38, 012016.

12. Muktepavela, F., Grigorjeva, L., Kundzins, K., Gorokhova, E., & Rodnyi, P. (2015). Structure, nanohardness and photoluminescence of ZnO ceramics based on nanopowders. Phys. Scr. 90 094018.

13. Yanagida, T., Fujimoto, Y., Yoshikawa, A., & Maeo, S. (2010). Scintillation properties of In-doped ZnO with different In concentrations. IEEE Trans. Nucl. Sci. 57(3), 1325–1328.

14. Gorokhova, E. I., Eron’ko, S. B, Kul’kov, A., Oreshchenko, E. A., Simonova, K. L., Chernenko, K. A.... Wieczorek, H. (2015). Development and study of ZnO:In optical scintillation ceramic. J. Opt. Technol. 82(12), 837–842.

15. Sohn, J. I., Hong, W-K, Lee, S., Lee, S., Ku, J., Park, Y. J. ... Kim, J.M. (2014). Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity. Sci. Rep.4, 5680.

16. Klinger, L., & Rabkin, E. (2010). Sintering of fully faceted crystalline particles. Intern. J. Mater.Res., 101 (1), 75–83.

17. Yoon, Y., & Cho, Y., K. (2005) Roughening transition of grain boundaries in metals and oxides. J. Mater. Sci., 40, 861–870.

18. Moriga, T., Edwards, D.D., Mason, T.O., Palmer, G.B., Kenneth Poeppelmeier, R., Schindler, J.L. … Nakabayashi, I. (1998). Phase Relationships and Physical Properties of Homologous Compounds in the Zinc Oxide–Indium Oxide System. J. Am. Ceram. Soc., 81, 5, 1310-1316.

19. Tang, C., Spencer, M.J. S., & Barnard, A. S. (2014). Activity of ZnO polar surfaces: An insight from surface energies. Phys. Chem. Chem. Phys., 16, 22139–22144.

20. Muktepavela, F., Bakradze, G., & Stolyarova, S. (2006). Effect of mechanoactivation on interfacial interaction in metal/oxide systems. Defect and Diffusion Forum, 249, 263–268.

21. Cahn, R. W. (ed.). (1965). Physical Metallurgy. 8. Amsterdam: North Holland.

22. Oba, F., Sato, Y., Yamamoto, T., Ohta, H., Hosono, H., & Ikuhara, Y. (2005). Effect of boundary plane on the atomic structure of [0001] Σ 7 tilt grain boundaries in ZnO. J. Mater. Sci. 40, 3067.

23. Fan, H. J., Fuhrmann, B., Scholz, R., Himcinschi, C., Berger, A., Leipner, H. … Zachatias, M. (2006). Vapour-transport-deposition growth of ZnO nanostructures: Switch between c-cxial wires and a-axial belts by indium doping. Nanotechnology, 17, 231–239.

24. Sursaeva, V, Gornakova, A., & Muktepavela, F. (2014). Grain boundary ridges slow down grain boundary motion: In-situ observation. Mater. Lett. 124, 241735.

25. Chen, I-W, & Wang, X.-H. (2000). Sintering dense nanocrystalline oxide without final stage grain growth. Nature, 404, 168–171.

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

Journal Information


CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 110 110 12
PDF Downloads 79 79 6