Open Access

Effect of in Doping on the ZnO Powders Morphology and Microstructure Evolution of ZnO:In Ceramics as a Material for Scintillators


Cite

1. Klingshirn, C. F., Meyer, B. K., Waag, A., & Hoffmann, A. (2010). Zinc oxide. From fundamental properties towards novel applications. Springer Series in Materials Science. 120. Springer, Heidelberg.10.1007/978-3-642-10577-7Search in Google Scholar

2. Ozgur, U., Alivov, Y I., Liu, C., Teke A., Reshchikov, M. A., Dogan, S.... Morkoc, H. (2005). A comprehensive review of ZnO materials and devices. J. App.Phys. 98, 04301l.10.1063/1.1992666Search in Google Scholar

3. Zhang, Z., Du, J., Li, B., Zhang, S., Hong, M., Zhang, X. …Zhang, Y. (2017). Ultrathin strain gated field effect transistor based on In-doped ZnO nanobelts. APL Materials 5, 086111.10.1063/1.4986098Search in Google Scholar

4. Lu, K. (2008). Sintering of nanoceramics. Intern. Mater. Rev. 53, 21–38.10.1179/174328008X254358Search in Google Scholar

5. Polyakov, B., Dorogin, L., Lohmus, A., Romanov, A., & Lohmus, R. (2012). In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope. Appl. Surf. Sci. 258, 3227–3231.10.1016/j.apsusc.2011.11.069Search in Google Scholar

6. Wilson, H. F., Tang, C., & Barnard, A. S. (2016). Morphology of zinc oxide nanoparticles and nanowires: Role of surface and edge energies. Phys. Chem. C, 120, 9498.10.1021/acs.jpcc.6b01479Search in Google Scholar

7. Huber, S. E., Hellström, M., Probst, M., Hermansson, K., & Broqvist, P. (2014). Large-scale SCC-DFTB calculations of reconstructed polar ZnO surfaces. Surf. Sci. 628, 50–61.10.1016/j.susc.2014.05.001Search in Google Scholar

8. Wilkinson, J., Ucer, K.B., & Williams, R.T. (2005). The oscillator strength of extended exciton states and possibility for very fast scintillators. Nucl. Instr. and Methods. Phys. Res. A. 537, 66–70.10.1016/j.nima.2004.07.236Search in Google Scholar

9. Rodnyi, P. A., Chernenko, K. A., Gorokhova, E. I., Kozlovskii, S.S., Khanin, V.M., & Khodyuk, I.V. (2012). Novel scintillation material – ZnO transparent ceramics. IEEE Trans. Nucl. Sci. 59(5), 2152–2155.10.1109/TNS.2012.2189896Search in Google Scholar

10. Kelly, J. P., & Graeve, O A. (2013). Effect of powder characteristics on nanosintering sintering mechanisms of convention nanodensification and field assisted processes. Sintering, 57–95.Search in Google Scholar

11. Muktepavela, F., Zabels, R., Sursajeva, V., Grigorjeva, L., & Kundzins, K. (2012). The role of nanopowder particle surfaces and grain boundary defects in the sintering of ZnO ceramics. IOP Conf. Ser. Mater. Sci. Eng. 38, 012016.10.1088/1757-899X/38/1/012016Search in Google Scholar

12. Muktepavela, F., Grigorjeva, L., Kundzins, K., Gorokhova, E., & Rodnyi, P. (2015). Structure, nanohardness and photoluminescence of ZnO ceramics based on nanopowders. Phys. Scr. 90 094018.10.1088/0031-8949/90/9/094018Search in Google Scholar

13. Yanagida, T., Fujimoto, Y., Yoshikawa, A., & Maeo, S. (2010). Scintillation properties of In-doped ZnO with different In concentrations. IEEE Trans. Nucl. Sci. 57(3), 1325–1328.10.1109/TNS.2009.2035120Search in Google Scholar

14. Gorokhova, E. I., Eron’ko, S. B, Kul’kov, A., Oreshchenko, E. A., Simonova, K. L., Chernenko, K. A.... Wieczorek, H. (2015). Development and study of ZnO:In optical scintillation ceramic. J. Opt. Technol. 82(12), 837–842.10.1364/JOT.82.000837Search in Google Scholar

15. Sohn, J. I., Hong, W-K, Lee, S., Lee, S., Ku, J., Park, Y. J. ... Kim, J.M. (2014). Surface energy-mediated construction of anisotropic semiconductor wires with selective crystallographic polarity. Sci. Rep.4, 5680.10.1038/srep05680409556625017476Search in Google Scholar

16. Klinger, L., & Rabkin, E. (2010). Sintering of fully faceted crystalline particles. Intern. J. Mater.Res., 101 (1), 75–83.10.3139/146.110257Search in Google Scholar

17. Yoon, Y., & Cho, Y., K. (2005) Roughening transition of grain boundaries in metals and oxides. J. Mater. Sci., 40, 861–870.Search in Google Scholar

18. Moriga, T., Edwards, D.D., Mason, T.O., Palmer, G.B., Kenneth Poeppelmeier, R., Schindler, J.L. … Nakabayashi, I. (1998). Phase Relationships and Physical Properties of Homologous Compounds in the Zinc Oxide–Indium Oxide System. J. Am. Ceram. Soc., 81, 5, 1310-1316.10.1111/j.1151-2916.1998.tb02483.xSearch in Google Scholar

19. Tang, C., Spencer, M.J. S., & Barnard, A. S. (2014). Activity of ZnO polar surfaces: An insight from surface energies. Phys. Chem. Chem. Phys., 16, 22139–22144.10.1039/C4CP03221GSearch in Google Scholar

20. Muktepavela, F., Bakradze, G., & Stolyarova, S. (2006). Effect of mechanoactivation on interfacial interaction in metal/oxide systems. Defect and Diffusion Forum, 249, 263–268.10.4028/www.scientific.net/DDF.249.263Search in Google Scholar

21. Cahn, R. W. (ed.). (1965). Physical Metallurgy. 8. Amsterdam: North Holland.Search in Google Scholar

22. Oba, F., Sato, Y., Yamamoto, T., Ohta, H., Hosono, H., & Ikuhara, Y. (2005). Effect of boundary plane on the atomic structure of [0001] Σ 7 tilt grain boundaries in ZnO. J. Mater. Sci. 40, 3067.10.1007/s10853-005-2666-4Search in Google Scholar

23. Fan, H. J., Fuhrmann, B., Scholz, R., Himcinschi, C., Berger, A., Leipner, H. … Zachatias, M. (2006). Vapour-transport-deposition growth of ZnO nanostructures: Switch between c-cxial wires and a-axial belts by indium doping. Nanotechnology, 17, 231–239.10.1088/0957-4484/17/11/S02Search in Google Scholar

24. Sursaeva, V, Gornakova, A., & Muktepavela, F. (2014). Grain boundary ridges slow down grain boundary motion: In-situ observation. Mater. Lett. 124, 241735.10.1016/j.matlet.2014.03.037Search in Google Scholar

25. Chen, I-W, & Wang, X.-H. (2000). Sintering dense nanocrystalline oxide without final stage grain growth. Nature, 404, 168–171.10.1038/3500454810724165Search in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics