Influence of Pressure and Temperature on X-Ray Induced Photoreduction of Nanocrystalline CuO

A. Kuzmin 1 , A. Anspoks 1 , L. Nataf 2 , F. Baudelet 2 , and T. Irifune 3
  • 1 Institute of Solid State Physics, University of Latvia, LV-1063, Riga, Latvia
  • 2 , 91192, Gif-sur-Yvette, France
  • 3 Geodynamics Research Center, Ehime University, 790-8577, Matsuyama, Japan

Abstract

X-ray absorption spectroscopy at the Cu K-edge is used to study X-ray induced photoreduction of copper oxide to metallic copper. Although no photoreduction has been observed in microcrystalline copper oxide, we have found that the photoreduction kinetics of nanocrystalline CuO depends on the crystallite size, temperature and pressure. The rate of photoreduction increases for smaller nanoparticles but decreases at low temperature and higher pressure.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., …Yang, S. (2014). CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci., 60, 208–337. DOI: 10.1016/j.pmatsci.2013.09.003

  • 2. Frenkel, A. I., Rodriguez, J. A., & Chen, J. G. (2012). Synchrotron techniques for in situ catalytic studies: Capabilities, challenges, and opportunities. ACS Catal., 2, 2269–2280. DOI: 10.1021/cs3004006

  • 3. Volanti, D. P., Felix, A. A., Suman, P. H., Longo, E., Varela, J. A., & Orlandi, M. O. (2015). Monitoring a CuO gas sensor at work: An advanced in situ X-ray absorption spectroscopy study. Phys. Chem. Chem. Phys., 17, 18761–18767. DOI: 10.1039/C5CP02150B

  • 4. Lin, F., Liu, Y., Yu, X., Cheng, L., Singer, A., Shpyrko, O. G., … Doeff, M. M. (2017). Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev., 117, 13123–13186. DOI: 10.1021/acs.chemrev.7b00007

  • 5. Liguang, W., Jiajun, W., & Pengjian, Z. (2018). Probing battery electrochemistry with in operando synchrotron X-ray imaging Techniques. Small Methods, 1700293. DOI: 10.1002/smtd.201700293

  • 6. Joshi, S., Patil, S., Iyer, V., & Mahumuni, S. (1998). Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct. Mater., 10, 1135–1144. DOI: 10.1016/S0965-9773(98)00153-6

  • 7. Yamaguchi, A., Okada, I., Fukuoka, T., Ishihara, M., Sakurai, I., & Utsumi, Y. (2016). One-step synthesis of copper and cupric oxide particles from the liquid phase by X-ray radiolysis using synchrotron radiation. J. Nanomater., 2016, 8584304. DOI: 10.1155/2016/8584304

  • 8. Oyanagi, H., Sun, Z. H., Jiang, Y., Uehara, M., Nakamura, H., Yamashita, K., … Maeda, H. (2012). Small copper clusters studied by X-ray absorption near-edge structure. J. Appl. Phys., 111, 084315. DOI: 10.1063/1.3700346

  • 9. Jayanetti, S., Mayanovic, R. A., Anderson, A. J., Bassett, W. A., & Chou, I. M. (2001). Analysis of radiation-induced small Cu particle cluster formation in aqueous CuCl2. J. Chem. Phys., 115, 954–962. DOI: 10.1063/1.1379758

  • 10. Lee, H. J., Je, J. H., Hwu, Y., & Tsai, W. (2003). Synchrotron X-ray induced solution precipitation of nanoparticles. Nucl. Instrum. Methods Phys. Res. B, 199, 342–347. DOI: 10.1016/S0168-583X(02)01561-6

  • 11. Oyanagi, H., Orimoto, Y., Hayakawa, K., Hatada, K., Sun, Z., Zhang, L., … Maeda, H. (2014). Nanoclusters synthesized by synchrotron radiolysis in concert with wet chemistry. Sci. Rep., 4, 7199. DOI: 10.1038/srep07199

  • 12. Mukherjee, S., Fauré, M. C., Goldmann, M., & Fontaine, P. (2015). Two step formation of metal aggregates by surface X-ray radiolysis under langmuir monolayers: 2D followed by 3D growth. Beilstein J. Nanotechnol., 6, 2406–2411. DOI: 10.3762/bjnano.6.247

  • 13. Jonah, C. D. (1995). A short history of the radiation chemistry of water. Radiat. Res., 144, 141–147. DOI: 10.2307/3579253

  • 14. Le Caer, S. (2011). Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water, 3, 235–253. DOI: 10.3390/w3010235

  • 15. Kuzmin, A., Anspoks, A., Kalinko, A., Rumjancevs, A., Timoshenko, J., Nataf, L., … Irifune, T. (2016). Effect of pressure and temperature on the local structure and lattice dynamics of copper(II) oxide. Phys. Procedia, 85, 27–35. DOI: 10.1016/j.phpro.2016.11.077

  • 16. Tran, T. H., & Nguyen, V. T. (2014). Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: A brief review. Int. Sch. Res. Notices, 2014, 856592. DOI: 10.1155/2014/856592

  • 17. Rietveld, H. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr., 22, 151–152. DOI: 10.1107/S0365110X67000234

  • 18. Doebelin, N., & Kleeberg, R. (2015). Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr., 48, 1573–1580. DOI: 10.1107/S1600576715014685

  • 19. Yamada, H., Zheng, X. G., Soejima, Y., & Kawaminami, M. (2004). Lattice distortion and magnetolattice coupling in CuO. Phys. Rev. B, 69, 104104. DOI: 10.1103/PhysRevB.69.104104

  • 20. Baudelet, F., Kong, Q., Nataf, L., Cafun, J. D., Congeduti, A., Monza, A., … Itié, J. P. (2011). ODE: A new beam line for high-pressure XAS and XMCD studies at SOLEIL. High Pressure Res., 31, 136–139. DOI: 10.1080/08957959.2010.532794

  • 21. Tetsuo, I., Ayako, K., Shizue, S., Toru, I., & Hitoshi, S. (2003). Materials: Ultrahard polycrystalline diamond from graphite. Nature, 421, 599–600. DOI: 10.1038/421599b

  • 22. Ishimatsu, N., Matsumoto, K., Maruyama, H., Kawamura, N., Mizumaki, M., Sumiya, H., & Irifune, T. (2012). Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils. J. Synchrotron Rad., 19, 768–772. DOI: 10.1107/S0909049512026088

  • 23. Bianchi, A. E., Plivelic, T. S., Punte, G., & Torriani, I. L. (2008). Probing the structure of nanograined CuO powders. J. Mater. Sci., 43, 3704–3712. DOI: 10.1007/s10853-008-2600-7

OPEN ACCESS

Journal + Issues

Search