Open Access

Influence of Pressure and Temperature on X-Ray Induced Photoreduction of Nanocrystalline CuO


Cite

1. Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., …Yang, S. (2014). CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci., 60, 208–337. DOI: 10.1016/j.pmatsci.2013.09.00310.1016/j.pmatsci.2013.09.003Open DOISearch in Google Scholar

2. Frenkel, A. I., Rodriguez, J. A., & Chen, J. G. (2012). Synchrotron techniques for in situ catalytic studies: Capabilities, challenges, and opportunities. ACS Catal., 2, 2269–2280. DOI: 10.1021/cs300400610.1021/cs3004006Open DOISearch in Google Scholar

3. Volanti, D. P., Felix, A. A., Suman, P. H., Longo, E., Varela, J. A., & Orlandi, M. O. (2015). Monitoring a CuO gas sensor at work: An advanced in situ X-ray absorption spectroscopy study. Phys. Chem. Chem. Phys., 17, 18761–18767. DOI: 10.1039/C5CP02150B10.1039/C5CP02150Open DOISearch in Google Scholar

4. Lin, F., Liu, Y., Yu, X., Cheng, L., Singer, A., Shpyrko, O. G., … Doeff, M. M. (2017). Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev., 117, 13123–13186. DOI: 10.1021/acs.chemrev.7b0000710.1021/acs.chemrev.7b00007Open DOISearch in Google Scholar

5. Liguang, W., Jiajun, W., & Pengjian, Z. (2018). Probing battery electrochemistry with in operando synchrotron X-ray imaging Techniques. Small Methods, 1700293. DOI: 10.1002/smtd.20170029310.1002/smtd.201700293Search in Google Scholar

6. Joshi, S., Patil, S., Iyer, V., & Mahumuni, S. (1998). Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct. Mater., 10, 1135–1144. DOI: 10.1016/S0965-9773(98)00153-610.1016/S0965-9773(98)00153-6Search in Google Scholar

7. Yamaguchi, A., Okada, I., Fukuoka, T., Ishihara, M., Sakurai, I., & Utsumi, Y. (2016). One-step synthesis of copper and cupric oxide particles from the liquid phase by X-ray radiolysis using synchrotron radiation. J. Nanomater., 2016, 8584304. DOI: 10.1155/2016/858430410.1155/2016/8584304Open DOISearch in Google Scholar

8. Oyanagi, H., Sun, Z. H., Jiang, Y., Uehara, M., Nakamura, H., Yamashita, K., … Maeda, H. (2012). Small copper clusters studied by X-ray absorption near-edge structure. J. Appl. Phys., 111, 084315. DOI: 10.1063/1.370034610.1063/1.3700346Search in Google Scholar

9. Jayanetti, S., Mayanovic, R. A., Anderson, A. J., Bassett, W. A., & Chou, I. M. (2001). Analysis of radiation-induced small Cu particle cluster formation in aqueous CuCl2. J. Chem. Phys., 115, 954–962. DOI: 10.1063/1.137975810.1063/1.1379758Open DOISearch in Google Scholar

10. Lee, H. J., Je, J. H., Hwu, Y., & Tsai, W. (2003). Synchrotron X-ray induced solution precipitation of nanoparticles. Nucl. Instrum. Methods Phys. Res. B, 199, 342–347. DOI: 10.1016/S0168-583X(02)01561-610.1016/S0168-583X(02)01561-6Search in Google Scholar

11. Oyanagi, H., Orimoto, Y., Hayakawa, K., Hatada, K., Sun, Z., Zhang, L., … Maeda, H. (2014). Nanoclusters synthesized by synchrotron radiolysis in concert with wet chemistry. Sci. Rep., 4, 7199. DOI: 10.1038/srep0719910.1038/srep07199Open DOISearch in Google Scholar

12. Mukherjee, S., Fauré, M. C., Goldmann, M., & Fontaine, P. (2015). Two step formation of metal aggregates by surface X-ray radiolysis under langmuir monolayers: 2D followed by 3D growth. Beilstein J. Nanotechnol., 6, 2406–2411. DOI: 10.3762/bjnano.6.24710.3762/bjnano.6.247Open DOISearch in Google Scholar

13. Jonah, C. D. (1995). A short history of the radiation chemistry of water. Radiat. Res., 144, 141–147. DOI: 10.2307/357925310.2307/3579253Open DOISearch in Google Scholar

14. Le Caer, S. (2011). Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water, 3, 235–253. DOI: 10.3390/w301023510.3390/w3010235Open DOISearch in Google Scholar

15. Kuzmin, A., Anspoks, A., Kalinko, A., Rumjancevs, A., Timoshenko, J., Nataf, L., … Irifune, T. (2016). Effect of pressure and temperature on the local structure and lattice dynamics of copper(II) oxide. Phys. Procedia, 85, 27–35. DOI: 10.1016/j.phpro.2016.11.07710.1016/j.phpro.2016.11.077Open DOISearch in Google Scholar

16. Tran, T. H., & Nguyen, V. T. (2014). Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: A brief review. Int. Sch. Res. Notices, 2014, 856592. DOI: 10.1155/2014/85659210.1155/2014/856592Search in Google Scholar

17. Rietveld, H. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr., 22, 151–152. DOI: 10.1107/S0365110X6700023410.1107/S0365110X67000234Open DOISearch in Google Scholar

18. Doebelin, N., & Kleeberg, R. (2015). Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr., 48, 1573–1580. DOI: 10.1107/S160057671501468510.1107/S1600576715014685Open DOISearch in Google Scholar

19. Yamada, H., Zheng, X. G., Soejima, Y., & Kawaminami, M. (2004). Lattice distortion and magnetolattice coupling in CuO. Phys. Rev. B, 69, 104104. DOI: 10.1103/PhysRevB.69.10410410.1103/PhysRevB.69.104104Search in Google Scholar

20. Baudelet, F., Kong, Q., Nataf, L., Cafun, J. D., Congeduti, A., Monza, A., … Itié, J. P. (2011). ODE: A new beam line for high-pressure XAS and XMCD studies at SOLEIL. High Pressure Res., 31, 136–139. DOI: 10.1080/08957959.2010.53279410.1080/08957959.2010.532794Open DOISearch in Google Scholar

21. Tetsuo, I., Ayako, K., Shizue, S., Toru, I., & Hitoshi, S. (2003). Materials: Ultrahard polycrystalline diamond from graphite. Nature, 421, 599–600. DOI: 10.1038/421599b10.1038/421599bOpen DOISearch in Google Scholar

22. Ishimatsu, N., Matsumoto, K., Maruyama, H., Kawamura, N., Mizumaki, M., Sumiya, H., & Irifune, T. (2012). Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils. J. Synchrotron Rad., 19, 768–772. DOI: 10.1107/S090904951202608810.1107/S0909049512026088Open DOISearch in Google Scholar

23. Bianchi, A. E., Plivelic, T. S., Punte, G., & Torriani, I. L. (2008). Probing the structure of nanograined CuO powders. J. Mater. Sci., 43, 3704–3712. DOI: 10.1007/s10853-008-2600-710.1007/s10853-008-2600-7Open DOISearch in Google Scholar

eISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics