Influence of Pressure and Temperature on X-Ray Induced Photoreduction of Nanocrystalline CuO

Open access


X-ray absorption spectroscopy at the Cu K-edge is used to study X-ray induced photoreduction of copper oxide to metallic copper. Although no photoreduction has been observed in microcrystalline copper oxide, we have found that the photoreduction kinetics of nanocrystalline CuO depends on the crystallite size, temperature and pressure. The rate of photoreduction increases for smaller nanoparticles but decreases at low temperature and higher pressure.

1. Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., …Yang, S. (2014). CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci., 60, 208–337. DOI: 10.1016/j.pmatsci.2013.09.003

2. Frenkel, A. I., Rodriguez, J. A., & Chen, J. G. (2012). Synchrotron techniques for in situ catalytic studies: Capabilities, challenges, and opportunities. ACS Catal., 2, 2269–2280. DOI: 10.1021/cs3004006

3. Volanti, D. P., Felix, A. A., Suman, P. H., Longo, E., Varela, J. A., & Orlandi, M. O. (2015). Monitoring a CuO gas sensor at work: An advanced in situ X-ray absorption spectroscopy study. Phys. Chem. Chem. Phys., 17, 18761–18767. DOI: 10.1039/C5CP02150B

4. Lin, F., Liu, Y., Yu, X., Cheng, L., Singer, A., Shpyrko, O. G., … Doeff, M. M. (2017). Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries. Chem. Rev., 117, 13123–13186. DOI: 10.1021/acs.chemrev.7b00007

5. Liguang, W., Jiajun, W., & Pengjian, Z. (2018). Probing battery electrochemistry with in operando synchrotron X-ray imaging Techniques. Small Methods, 1700293. DOI: 10.1002/smtd.201700293

6. Joshi, S., Patil, S., Iyer, V., & Mahumuni, S. (1998). Radiation induced synthesis and characterization of copper nanoparticles. Nanostruct. Mater., 10, 1135–1144. DOI: 10.1016/S0965-9773(98)00153-6

7. Yamaguchi, A., Okada, I., Fukuoka, T., Ishihara, M., Sakurai, I., & Utsumi, Y. (2016). One-step synthesis of copper and cupric oxide particles from the liquid phase by X-ray radiolysis using synchrotron radiation. J. Nanomater., 2016, 8584304. DOI: 10.1155/2016/8584304

8. Oyanagi, H., Sun, Z. H., Jiang, Y., Uehara, M., Nakamura, H., Yamashita, K., … Maeda, H. (2012). Small copper clusters studied by X-ray absorption near-edge structure. J. Appl. Phys., 111, 084315. DOI: 10.1063/1.3700346

9. Jayanetti, S., Mayanovic, R. A., Anderson, A. J., Bassett, W. A., & Chou, I. M. (2001). Analysis of radiation-induced small Cu particle cluster formation in aqueous CuCl2. J. Chem. Phys., 115, 954–962. DOI: 10.1063/1.1379758

10. Lee, H. J., Je, J. H., Hwu, Y., & Tsai, W. (2003). Synchrotron X-ray induced solution precipitation of nanoparticles. Nucl. Instrum. Methods Phys. Res. B, 199, 342–347. DOI: 10.1016/S0168-583X(02)01561-6

11. Oyanagi, H., Orimoto, Y., Hayakawa, K., Hatada, K., Sun, Z., Zhang, L., … Maeda, H. (2014). Nanoclusters synthesized by synchrotron radiolysis in concert with wet chemistry. Sci. Rep., 4, 7199. DOI: 10.1038/srep07199

12. Mukherjee, S., Fauré, M. C., Goldmann, M., & Fontaine, P. (2015). Two step formation of metal aggregates by surface X-ray radiolysis under langmuir monolayers: 2D followed by 3D growth. Beilstein J. Nanotechnol., 6, 2406–2411. DOI: 10.3762/bjnano.6.247

13. Jonah, C. D. (1995). A short history of the radiation chemistry of water. Radiat. Res., 144, 141–147. DOI: 10.2307/3579253

14. Le Caer, S. (2011). Water radiolysis: Influence of oxide surfaces on H2 production under ionizing radiation. Water, 3, 235–253. DOI: 10.3390/w3010235

15. Kuzmin, A., Anspoks, A., Kalinko, A., Rumjancevs, A., Timoshenko, J., Nataf, L., … Irifune, T. (2016). Effect of pressure and temperature on the local structure and lattice dynamics of copper(II) oxide. Phys. Procedia, 85, 27–35. DOI: 10.1016/j.phpro.2016.11.077

16. Tran, T. H., & Nguyen, V. T. (2014). Copper oxide nanomaterials prepared by solution methods, some properties, and potential applications: A brief review. Int. Sch. Res. Notices, 2014, 856592. DOI: 10.1155/2014/856592

17. Rietveld, H. (1967). Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr., 22, 151–152. DOI: 10.1107/S0365110X67000234

18. Doebelin, N., & Kleeberg, R. (2015). Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr., 48, 1573–1580. DOI: 10.1107/S1600576715014685

19. Yamada, H., Zheng, X. G., Soejima, Y., & Kawaminami, M. (2004). Lattice distortion and magnetolattice coupling in CuO. Phys. Rev. B, 69, 104104. DOI: 10.1103/PhysRevB.69.104104

20. Baudelet, F., Kong, Q., Nataf, L., Cafun, J. D., Congeduti, A., Monza, A., … Itié, J. P. (2011). ODE: A new beam line for high-pressure XAS and XMCD studies at SOLEIL. High Pressure Res., 31, 136–139. DOI: 10.1080/08957959.2010.532794

21. Tetsuo, I., Ayako, K., Shizue, S., Toru, I., & Hitoshi, S. (2003). Materials: Ultrahard polycrystalline diamond from graphite. Nature, 421, 599–600. DOI: 10.1038/421599b

22. Ishimatsu, N., Matsumoto, K., Maruyama, H., Kawamura, N., Mizumaki, M., Sumiya, H., & Irifune, T. (2012). Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvils. J. Synchrotron Rad., 19, 768–772. DOI: 10.1107/S0909049512026088

23. Bianchi, A. E., Plivelic, T. S., Punte, G., & Torriani, I. L. (2008). Probing the structure of nanograined CuO powders. J. Mater. Sci., 43, 3704–3712. DOI: 10.1007/s10853-008-2600-7

Latvian Journal of Physics and Technical Sciences

The Journal of Institute of Physical Energetics

Journal Information

CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.147
Source Normalized Impact per Paper (SNIP) 2018: 0.325


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 180 180 18
PDF Downloads 105 105 9